Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conscripts of the infinite armada: systemic cancer therapy using nanomaterials

Abstract

The field of clinical nanomaterials is enlarging steadily, with more than a billion US dollars of funding allocated to research by US government agencies in the past decade. The first generation of anti-cancer agents using novel nanomaterials has successfully entered widespread use. Newer nanomaterials are garnering increasing interest as potential multifunctional therapeutic agents; these drugs are conferred novel properties, by virtue of their size and shape. The new features of these agents could potentially allow increased cancer selectivity, changes in pharmacokinetics, amplification of cytotoxic effects, and simultaneous imaging capabilities. After attachment to cancer target reactive-ligands, which interact with cell-surface antigens or receptors, these new constructs can deliver cytolytic and imaging payloads. The molecules also introduce new challenges for drug development. While nanoscale molecules are of a similar size to proteins, the paradigms for how cells, tissues and organs of the body react to the non-biological materials are not well understood, because most cellular and metabolic processes have evolved to deal with globular, enzyme degradable molecules. We discuss examples of different materials to illustrate interesting principles for development and future applications of these nanomaterial medicines with emphasis on the possible pharmacologic and safety hurdles for accomplishing therapeutic goals.

Key Points

  • Therapeutic uses of novel materials have become widespread; many newer nanoparticles have emerged as candidates for drugs, each with distinctive chemical and biological compositions, and diverse in vivo behaviors

  • Newer nanomaterials are garnering increasing interest as potential multifunctional therapeutic agents, which by virtue of their size, geometric patterning and shape are conferred novel properties

  • The synthesis of nanomaterials allows multifunctional and multivalent molecules to be generated, which may enhance potency, therapeutic index or selectivity

  • The various sizes and shapes of nanomaterials yield very large surface to volume ratios or the possibility of containment for various cargo

  • The accumulation of nanoparticles in tumors, termed the enhanced permeability and retention effect was initially described over two decades ago, and has been successfully applied to nanoparticles

  • The unusual properties of nanomaterials pose challenges to understanding their pharmacokinetics as different components will have different features that affect their distributions, clearance and catabolism

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 50 years of nanomedicine development for cancer.
Figure 2
Figure 3: Some proposed steps in the development of a nanomaterial anti-cancer agent.

Similar content being viewed by others

References

  1. Feynman, R. P., Robbins, J. & Dyson, F. J. The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman (Perseus Books, Cambridge, MA, 1999).

    Google Scholar 

  2. Haberzettl, C. A. Nanomedicine: destination or journey? Nanotechnology 13, R9 (2002).

    CAS  Google Scholar 

  3. Whitesides, G. M. The once and future nanomachine. Sci. Am. 285, 78–83 (2001).

    CAS  PubMed  Google Scholar 

  4. Pastan, I., Hassan, R., Fitzgerald, D. J. & Kreitman, R. J. Immunotoxin therapy of cancer. Nat. Rev. Cancer 6, 559–565 (2006).

    CAS  PubMed  Google Scholar 

  5. Zhang, M. et al. Pretarget radiotherapy with an anti-CD25 antibody-streptavidin fusion protein was effective in therapy of leukemia/lymphoma xenografts. Proc. Natl Acad. Sci. USA 100, 1891–1895 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, G. & McLeod, H. L. Strategies for enzyme/prodrug cancer therapy. Clin. Cancer Res. 7, 3314–3324 (2001).

    CAS  PubMed  Google Scholar 

  7. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    CAS  PubMed  Google Scholar 

  8. McDevitt, M. R. et al. Tumor therapy with targeted atomic nanogenerators. Science 294, 1537–1540 (2001).

    CAS  PubMed  Google Scholar 

  9. National Research Council of the National Academies. A Matter of Size: Triennial Review of the National Nanotechnology Initiative. The National Academies Press (2006).

  10. Hartman, K. B., Wilson, L. J. & Rosenblum, M. G. Detecting and treating cancer with nanotechnology. Mol. Diagn. Ther. 12, 1–14 (2008).

    CAS  PubMed  Google Scholar 

  11. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    CAS  PubMed  Google Scholar 

  12. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    CAS  PubMed  Google Scholar 

  13. Ferrari, M. Nanogeometry: beyond drug delivery. Nat. Nanotechnol. 3, 131–132 (2008).

    CAS  PubMed  Google Scholar 

  14. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    CAS  PubMed  Google Scholar 

  15. Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2, 750–763 (2002).

    CAS  PubMed  Google Scholar 

  16. Minko, T., Pakunlu, R. I., Wang, Y., Khandare, J. J. & Saad, M. New generation of liposomal drugs for cancer. Anticancer Agents Med. Chem. 6, 537–552 (2006).

    CAS  PubMed  Google Scholar 

  17. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    CAS  PubMed  Google Scholar 

  18. Heath, J. R., Phelps, M. E. & Hood, L. NanoSystems biology. Mol. Imaging Biol. 5, 312–325 (2003).

    PubMed  Google Scholar 

  19. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  20. Simmel, F. C. Towards biomedical applications for nucleic acid nanodevices. Nanomedicine 2, 817–830 (2007).

    CAS  PubMed  Google Scholar 

  21. Cattaneo, R., Miest, T., Shashkova, E. V. & Barry, M. A. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat. Rev. Microbiol. 6, 529–540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Resnik, D. B. & Tinkle, S. S. Ethical issues in clinical trials involving nanomedicine. Contemp. Clin. Trials 28, 433–441 (2007).

    PubMed  Google Scholar 

  23. Drexler, K. E. Engines of Creation (Anchor Press/Doubleday, Garden City, NY, 1986).

    Google Scholar 

  24. Crichton, M. Prey (HarperCollins, New York, 2002).

    Google Scholar 

  25. Stark, D. D. et al. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301 (1988).

    CAS  PubMed  Google Scholar 

  26. Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175, 494–498 (1990).

    CAS  PubMed  Google Scholar 

  27. Eghtedari, M., Liopo, A. V., Copland, J. A., Oraevsky, A. A. & Motamedi, M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett. 9, 287–291 (2008).

    Google Scholar 

  28. Gannon, C. J. et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110, 2654–2665 (2007).

    CAS  PubMed  Google Scholar 

  29. Burke, A. et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl Acad. Sci. USA 106, 12897–12902 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kam, N. W. & Dai, H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005).

    CAS  PubMed  Google Scholar 

  31. Georgakilas, V. et al. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761 (2002).

    CAS  PubMed  Google Scholar 

  32. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    CAS  PubMed  Google Scholar 

  33. Li, C. & Wallace, S. Polymer–drug conjugates: recent development in clinical oncology. Adv. Drug Deliv. Rev. 60, 886–898 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schluep, T. et al. Preclinical efficacy of the camptothecin–polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res. 12, 1606–1614 (2006).

    CAS  PubMed  Google Scholar 

  35. Scheinberg, D. A., Strand, M. & Gansow, O. A. Tumor imaging with radioactive metal chelates conjugated to monoclonal antibodies. Science 215, 1511–1513 (1982).

    CAS  PubMed  Google Scholar 

  36. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    CAS  PubMed  Google Scholar 

  37. Whitesides, G. M. The 'right' size in nanobiotechnology. Nat. Biotechnol. 21, 1161–1165 (2003).

    CAS  PubMed  Google Scholar 

  38. Euliss, L. E., DuPont, J. A., Gratton, S. & DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35, 1095–1104 (2006).

    CAS  PubMed  Google Scholar 

  39. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    CAS  PubMed  Google Scholar 

  40. Jiang, W., Kim, B. Y., Rutka, J. & Chan, W. C. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    CAS  PubMed  Google Scholar 

  41. Osaki, F., Kanamori, T., Sando, S., Sera, T. & Aoyama, Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520–6521 (2004).

    CAS  PubMed  Google Scholar 

  42. Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fifis, T. et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004).

    CAS  PubMed  Google Scholar 

  45. Tran, K. K. & Shen, H. The role of phagosomal pH on the size-dependent efficiency of cross-presentation by dendritic cells. Biomaterials 30, 1356–1362 (2009).

    CAS  PubMed  Google Scholar 

  46. Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008).

    CAS  PubMed  Google Scholar 

  47. Malik, N. et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65, 133–148 (2000).

    CAS  PubMed  Google Scholar 

  48. Deen, W. M. What determines glomerular capillary permeability? J. Clin. Invest. 114, 1412–1414 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Deen, W. M., Lazzara, M. J. & Myers, B. D. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, F579–F596 (2001).

    CAS  PubMed  Google Scholar 

  50. Kobayashi, H. & Brechbiel, M. W. Dendrimer-based nanosized MRI contrast agents. Curr. Pharm. Biotechnol. 5, 539–549 (2004).

    CAS  PubMed  Google Scholar 

  51. Semmler-Behnke, M. et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4, 2108–2111 (2008).

    CAS  PubMed  Google Scholar 

  52. De Jong, W. H. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008).

    CAS  PubMed  Google Scholar 

  53. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Joshi, A., Vance, D., Rai, P., Thiyagarajan, A. & Kane, R. S. The design of polyvalent therapeutics. Chemistry 14, 7738–7747 (2008).

    CAS  PubMed  Google Scholar 

  56. Fox, M. E., Szoka, F. C. & Fréchet, J. M. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 42, 1141–1151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Champion, J. A., Katare, Y. K. & Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA 104, 11901–11904 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gratton, S. E., Napier, M. E., Ropp, P. A., Tian, S. & DeSimone, J. M. Microfabricated particles for engineered drug therapies: elucidation into the mechanisms of cellular internalization of PRINT particles. Pharm. Res. 25, 2845–2852 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jana, N. R., Gearheart, L. & Murphy, J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389–1393 (2001).

    CAS  Google Scholar 

  60. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, K., Fang, H., Chen, Z., Taylor, J. S. & Wooley, K. L. Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug. Chem. 19, 1880–1887 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Decuzzi, P. & Ferrari, M. The receptor-mediated endocytosis of nonspherical particles. Biophys. J. 94, 3790–3797 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jin, H., Heller, D. A., Sharma, R. & Strano, M. S. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3, 149–158 (2009).

    CAS  PubMed  Google Scholar 

  64. Champion, J. A. & Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 26, 244–249 (2009).

    CAS  PubMed  Google Scholar 

  65. Wong Shi Kam, N. & Dai, H. Single walled carbon nanotubes for transport and delivery of biological cargos. Physica Status Solidi B 243, 3561–3566 (2006).

    Google Scholar 

  66. Kostarelos, K. et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007).

    CAS  PubMed  Google Scholar 

  67. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. McDevitt, M. R. et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2, e907 (2007).

    PubMed  PubMed Central  Google Scholar 

  69. Singh, R. et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl Acad. Sci. USA 103, 3357–3362 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Villa, C. et al. Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes. Nano Lett. 8, 4221–4228 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Okamura, Y. et al. Novel platelet substitutes: disk-shaped biodegradable nanosheets and their enhanced effects on platelet aggregation. Bioconjug. Chem. 20, 1958–1965 (2009).

    CAS  PubMed  Google Scholar 

  72. Joshi, A., Vance, D., Rai, P., Thiyagarajan, A. & Kane, R. S. The design of polyvalent therapeutics. Chemistry 14, 7738–7747 (2008).

    CAS  PubMed  Google Scholar 

  73. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 7, 588–595 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jones, S. W. et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145, 1093–1102 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Costantini, D. L., Hu, M. & Reilly, R. M. Peptide motifs for insertion of radiolabeled biomolecules into cells and routing to the nucleus for cancer imaging or radiotherapeutic applications. Cancer Biother. Radiopharm. 23, 3–24 (2008).

    CAS  PubMed  Google Scholar 

  76. Kobayashi, H. et al. The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points. Cancer Res. 59, 422–430 (1999).

    CAS  PubMed  Google Scholar 

  77. Faure, A. C. et al. Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5, 2565–2575 (2009).

    CAS  PubMed  Google Scholar 

  78. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Duncan, R. & Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 57, 2215–2237 (2005).

    CAS  PubMed  Google Scholar 

  80. Yamamoto, Y., Nagasaki, Y., Kato, Y., Sugiyama, Y. & Kataoka, K. Long-circulating poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles with modulated surface charge. J. Control. Release 77, 27–38 (2001).

    CAS  PubMed  Google Scholar 

  81. Gotthardt, M. et al. Indication for different mechanisms of kidney uptake of radiolabeled peptides. J. Nucl. Med. 48, 596–601 (2007).

    CAS  PubMed  Google Scholar 

  82. Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M. E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA 104, 15549–15554 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Albrecht, H. & Denardo, S. Recombinant antibodies: from the laboratory to the clinic. Cancer Biother. Radiopharm. 21, 285–304 (2006).

    CAS  PubMed  Google Scholar 

  84. Oldham, R. K. & Dillman, R. O. Monoclonal antibodies in cancer therapy: 25 years of progress. J. Clin. Oncol. 26, 1774–1777 (2008).

    PubMed  Google Scholar 

  85. Boyiadzis, M. & Foon, K. A. Approved monoclonal antibodies for cancer therapy. Expert Opin. Biol. Ther. 8, 1151–1158 (2008).

    CAS  PubMed  Google Scholar 

  86. Castillo, J., Winer, E. & Quesenberry, P. Newer monoclonal antibodies for hematological malignancies. Exp. Hematol. 36, 755–768 (2008).

    CAS  PubMed  Google Scholar 

  87. Tassev, D. V. & Cheung, N. K. Monoclonal antibody therapies for solid tumors. Expert Opin. Biol. Ther. 9, 341–353 (2009).

    CAS  PubMed  Google Scholar 

  88. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  PubMed  Google Scholar 

  89. Shaked, Y. et al. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14, 263–273 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  91. Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995).

    CAS  PubMed  Google Scholar 

  92. Boven, E. et al. Phase II preclinical drug screening in human tumor xenografts: a first European multicenter collaborative study. Cancer Res. 52, 5940–5947 (1992).

    CAS  PubMed  Google Scholar 

  93. Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227–4239 (2003).

    PubMed  Google Scholar 

  94. Minko, T., Kopeckova, P., Pozharov, V., Jensen, K. D. & Kopecek, J. The influence of cytotoxicity of macromolecules and of VEGF gene modulated vascular permeability on the enhanced permeability and retention effect in resistant solid tumors. Pharm. Res. 17, 505–514 (2000).

    CAS  PubMed  Google Scholar 

  95. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gao, X., Cui, Y., Levenson, R., Chung, L. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    CAS  PubMed  Google Scholar 

  97. Liu, Z. et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McDevitt, M. R. et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48, 1180–1189 (2007).

    CAS  PubMed  Google Scholar 

  99. Bhirde, A. A. et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3, 307–316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2009).

    PubMed  PubMed Central  Google Scholar 

  101. US Department of Health and Human Services FDA Regulation of Nanotechnology Products [online], (2009).

  102. Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B. & McNeil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 5, 487–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Eckelman, W., Kilbourn, M. R., Joyal, J. L., Labiris, R. & Valliant, J. F. Justifying the number of animals for each experiment. Nucl. Med. Biol. 34, 229–232 (2007).

    CAS  PubMed  Google Scholar 

  104. The Radiochemical Manual 2nd edn (Ed. B. J. Wilson) (The Radiochemical Centre, Amersham, 1966).

  105. Hall, J. B., Dobrovolskaia, M. A., Patri, A. K. & McNeil, S. E. Characterization of nanoparticles for therapeutics. Nanomedicine 2, 789–803 (2007).

    CAS  PubMed  Google Scholar 

  106. Boxall, A. B., Tiede, K. & Chaudhry, Q. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2, 919–927 (2007).

    CAS  PubMed  Google Scholar 

  107. Nel, A., Xia, T., Mädler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    CAS  PubMed  Google Scholar 

  108. De Jong, W. H. & Borm, P. J. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Elgrabli, D. et al. Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology 253, 131–136 (2008).

    CAS  PubMed  Google Scholar 

  110. Hamad, I. et al. Complement activation by pegylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol. 45, 3797–3803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kagan, V. E., Bayir, H. & Shvedova, A. A. Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1, 313–316 (2005).

    CAS  PubMed  Google Scholar 

  112. Magrez, A. et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006).

    CAS  PubMed  Google Scholar 

  113. Simon-Deckers, A. et al. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253, 137–146 (2008).

    CAS  PubMed  Google Scholar 

  114. Zhang, L. W., Zeng, L., Barron, A. R. & Monteiro-Riviere, N. A. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicol. 26, 103–113 (2007).

    CAS  PubMed  Google Scholar 

  115. Lam, C. W., James, J. T., McCluskey, R., Arepalli, S. & Hunter, R. L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 36, 189–217 (2006).

    CAS  PubMed  Google Scholar 

  116. Dumortier, H. et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6, 1522–1528 (2006).

    CAS  PubMed  Google Scholar 

  117. Lacerda, L. et al. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3, 149–161 (2008).

    CAS  PubMed  Google Scholar 

  118. Schipper, M. L. et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3, 216–221 (2008).

    CAS  PubMed  Google Scholar 

  119. Allen, B. L. et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 8, 3899–3903 (2008).

    CAS  PubMed  Google Scholar 

  120. Costigan, S. The toxicology of nanoparticles used in healthcare products. http://www.mhra.gov.uk/home/idcplg?IdcService=SS_GET_PAGE&nodeId=996 (2006).

  121. De Jong, W. H. & Borm, P. J. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chang, J. S., Chang, K. L., Hwang, D. F. & Kong, Z. L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41, 2064–2068 (2007).

    CAS  PubMed  Google Scholar 

  123. Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006).

    PubMed  Google Scholar 

  124. Hoshino, A. et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163–2169 (2004).

    CAS  Google Scholar 

  125. Lovric, J. et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377–385 (2005).

    PubMed  Google Scholar 

  126. Chen, H. T., Neerman, M. F., Parrish, A. R. & Simanek, E. E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 126, 10044–10048 (2004).

    CAS  PubMed  Google Scholar 

  127. Heiden, T. C., Dengler, E., Kao, W. J., Heideman, W. & Peterson, R. E. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharmacol. 225, 70–79 (2007).

    PubMed  Google Scholar 

  128. Roberts, J. C., Bhalgat, M. K. & Zera, R. T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res. 30, 53–65 (1996).

    CAS  PubMed  Google Scholar 

  129. Plank, C., Mechtler, K., Szoka, F. C. Jr & Wagner, E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7, 1437–1446 (1996).

    CAS  PubMed  Google Scholar 

  130. Kaminskas, L. M. et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of pegylated poly l-lysine dendrimers. Mol. Pharm. 5, 449–463 (2008).

    CAS  PubMed  Google Scholar 

  131. Larson, S. M. & Nelp, W. B. Radiopharmacology of a simplifield technetium-99m-colloid preparation for photoscanning. J. Nucl. Med. 7, 817–826 (1966).

    CAS  PubMed  Google Scholar 

  132. Escorcia, F. E., McDevitt, M. R., Villa, C. H. & Scheinberg, D. A. Targeted nanomaterials for radiotherapy. Nanomedicine 2, 805–815 (2007).

    CAS  PubMed  Google Scholar 

  133. Cai, W. & Chen, X. Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med. 49 (Suppl. 2), 113S–128S (2008).

    CAS  PubMed  Google Scholar 

  134. Sitharaman, B. et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 21, 3915–3917 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Scheinberg.

Ethics declarations

Competing interests

D. A. Scheinberg declares associations with the following company: Encyse Biosciences Inc. M. R. McDevitt declares associations with the following company: Actinium Pharmaceuticals. The other authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Information (DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheinberg, D., Villa, C., Escorcia, F. et al. Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat Rev Clin Oncol 7, 266–276 (2010). https://doi.org/10.1038/nrclinonc.2010.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.38

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer