Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chlamydial infection: the link with ocular adnexal lymphomas

A Correction to this article was published on 01 December 2009

Abstract

Chlamydiae are obligate intracellular bacteria that grow in eukaryotic cells and cause a wide spectrum of diseases. They can establish persistent infections, are mitogenic in vitro, promote polyclonal cell proliferation in vivo and induce resistance to apoptosis in infected cells—properties that might contribute to tumorigenesis. In fact, Chlamydophila psittaci (Cp) has been linked to the development and maintenance of ocular adnexal marginal zone B-cell lymphoma (OAMZL). In this indolent malignancy, Cp is transported by monocytes and macrophages and causes both local and systemic infection. Cp elementary bodies are viable and infectious in the conjunctiva and peripheral blood of patients with OAMZL. Bacterial eradication with antibiotic therapy is often followed by lymphoma regression. Despite recent advances in the understanding of this bacterium–lymphoma association, several questions remain unanswered. For instance, prevalence variations among different geographical areas and related diagnostic and therapeutic implications remain a major investigational issue. We will focus on clinical and therapeutic implications of chlamydial infections in patients with lymphomas and summarize the current knowledge on the association between Cp infection and OAMZL. Available data on the epidemiology, biology and pathogenesis of this association are analyzed and new investigative and clinical approaches are discussed.

Key Points

  • Chlamydophila psittaci (Cp) is the etiological agent of psittacosis in humans, a zoonotic disease caused by exposure to infected animals, mostly birds; Cp can also infect domestic mammals, including pets

  • A potential oncogenic role is suggested for chlamydiae based on several peculiar biological properties that imply an antigen selection process during lymphoma development

  • Cp infection prevalence varies among patients with ocular adnexal marginal zone B-cell lymphoma (OAMZL) from different geographical areas; OAMZL is usually indolent with a favorable prognosis

  • Cp is present in monocytes and macrophages that infiltrate OAMZL as demonstrated by PCR-based techniques, immunohistochemistry, immunofluorescence and direct electron microscopy

  • Cp is viable and infectious in the conjunctiva and peripheral blood of patients with OAMZL and is the first obligate intracellular bacterium to be linked with lymphomas

  • Cp eradication with doxycycline results in the removal of critical antigen stimulation and lymphoma regression in 50% of patients with OAMZL

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy of Chlamydophila psittaci in lymphoma.
Figure 2: Host cell invasion and intracellular growth of chlamydiae.
Figure 3: Immunohistochemistry of OAMZL tissue.
Figure 4: Chlamydial inclusions in J774A.1 cells.
Figure 5: A therapeutic strategy for patients with OAMZL.
Figure 6: CT scans of a patient with OAMZL.

Similar content being viewed by others

References

  1. Doglioni, C., Wotherspoon, A. C., Moschini, A., de Boni, M. & Isaacson, P. G. High incidence of primary gastric lymphoma in northeastern Italy. Lancet 339, 834–835 (1992).

    CAS  PubMed  Google Scholar 

  2. Isaacson, P. G. et al. Long-term follow-up of gastric MALT lymphoma treated by eradication of H. pylori with antibodies. Gastroenterology 117, 750–751 (1999).

    CAS  PubMed  Google Scholar 

  3. Parsonnet, J. et al. Helicobacter pylori infection and gastric lymphoma. N. Engl. J. Med. 330, 1267–1271 (1994).

    CAS  PubMed  Google Scholar 

  4. Zucca, E. et al. Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N. Engl. J. Med. 338, 804–810 (1998).

    CAS  PubMed  Google Scholar 

  5. Ferreri, A. J. et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J. Natl Cancer Inst. 96, 586–594 (2004).

    PubMed  Google Scholar 

  6. Ferreri, A. J. et al. Chlamydophila psittaci is viable and infectious in the conjunctiva and peripheral blood of patients with ocular adnexal lymphoma: results of a single-center prospective case-control study. Int. J. Cancer 123, 1089–1093 (2008).

    CAS  PubMed  Google Scholar 

  7. Ponzoni, M. et al. Chlamydia infection and lymphomas: association beyond ocular adnexal lymphomas highlighted by multiple detection methods. Clin. Cancer Res. 14, 5794–5800 (2008).

    CAS  PubMed  Google Scholar 

  8. Ferreri, A. J. et al. Regression of ocular adnexal lymphoma after Chlamydia psittaci-eradicating antibiotic therapy. J. Clin. Oncol. 23, 5067–5073 (2005).

    PubMed  Google Scholar 

  9. Ferreri, A. J. et al. Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J. Natl Cancer Inst. 98, 1375–1382 (2006).

    CAS  PubMed  Google Scholar 

  10. Ferreri, A. J. et al. A woman and her canary: a tale of chlamydiae and lymphomas. J. Natl Cancer Inst. 99, 1418–1419 (2007).

    PubMed  Google Scholar 

  11. Andersen, A. A. & Vanrompay, D. in Diseases of Poultry 12th edn (eds Saif, Y. M. et al.) 971–986 (Blackwell Publishing, Ames, 2008).

    Google Scholar 

  12. Sykes, J. E. Feline chlamydiosis. Clin. Tech. Small Anim. Pract. 20, 129–134 (2005).

    PubMed  Google Scholar 

  13. Kaleta, E. F. & Taday, E. M. Avian host range of Chlamydophila spp. based on isolation, antigen detection and serology. Avian Pathol. 32, 435–461 (2003).

    CAS  PubMed  Google Scholar 

  14. Longbottom, D. & Coulter, L. J. Animal chlamydioses and zoonotic implications. J. Comp. Pathol. 128, 217–244 (2003).

    CAS  PubMed  Google Scholar 

  15. Heddema, E. R., van Hannen, E. J., Duim, B., Vandenbroucke-Grauls, C. M. & Pannekoek, Y. Genotyping of Chlamydophila psittaci in human samples. Emerg. Infect. Dis. 12, 1989–1990 (2006).

    PubMed  PubMed Central  Google Scholar 

  16. Koivisto, A. L. et al. Chlamydial antibodies in an elderly Finnish population. Scand. J. Infect. Dis. 31, 135–139 (1999).

    CAS  PubMed  Google Scholar 

  17. Bergstrom, K., Domeika, M., Vaitkiene, D., Persson, K. & Mårdh, P. A. Prevalence of Chlamydia trachomatis, Chlamydia psittaci and Chlamydia pneumoniae antibodies in blood donors and attendees of STD clinics. Clin. Microbiol. Infect. 1, 253–260 (1996).

    PubMed  Google Scholar 

  18. Mahmoud, E., Elshibly, S. & Mardh, P. A. Seroepidemiologic study of Chlamydia pneumoniae and other chlamydial species in a hyperendemic area for trachoma in the Sudan. Am. J. Trop. Med. Hyg. 51, 489–494 (1994).

    CAS  PubMed  Google Scholar 

  19. Ni, A. P. et al. A seroepidemiologic study of Chlamydia pneumoniae, Chlamydia trachomatis and Chlamydia psittaci in different populations on the mainland of China. Scand. J. Infect. Dis. 28, 553–557 (1996).

    CAS  PubMed  Google Scholar 

  20. Byrne, G. I. & Ojcius, D. M. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat. Rev. Microbiol. 2, 802–808 (2004).

    CAS  PubMed  Google Scholar 

  21. Räsänen, L., Lehto, M., Jokinen, I. & Leinikki, P. Polyclonal antibody formation of human lymphocytes to bacterial components. Immunology 58, 577–581 (1986).

    PubMed  PubMed Central  Google Scholar 

  22. Lehtinen, M. et al. B cell response in Chlamydia trachomatis endometritis. Eur. J. Clin. Microbiol. 5, 596–598 (1986).

    CAS  PubMed  Google Scholar 

  23. Rajalingam, K. et al. Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis. Infect. Immun. 69, 7880–7888 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith, J. S. et al. Evidence for Chlamydia trachomatis as a human papillomavirus cofactor in the etiology of invasive cervical cancer in Brazil and the Philippines. J. Infect. Dis. 185, 324–331 (2002).

    PubMed  Google Scholar 

  25. Laurila, A. L. et al. Serological evidence of an association between Chlamydia pneumoniae infection and lung cancer. Int. J. Cancer 74, 31–34 (1997).

    CAS  PubMed  Google Scholar 

  26. Abrams, J. T., Balin, B. J. & Vonderheid, E. C. Association between Sezary T cell-activating factor, Chlamydia pneumoniae, and cutaneous T cell lymphoma. Ann. NY Acad. Sci. 941, 69–85 (2001).

    CAS  PubMed  Google Scholar 

  27. Anttila, T. I. et al. Serological evidence of an association between chlamydial infections and malignant lymphomas. Br. J. Haematol. 103, 150–156 (1998).

    CAS  PubMed  Google Scholar 

  28. Isaacson, P. G. & Du, M. Q. MALT lymphoma: from morphology to molecules. Nat. Rev. Cancer 4, 644–653 (2004).

    CAS  PubMed  Google Scholar 

  29. Pascual, V. & Capra, J. D. VH4–21, a human VH gene segment overrepresented in the autoimmune repertoire. Arthritis Rheum. 35, 11–18 (1992).

    CAS  PubMed  Google Scholar 

  30. Bahler, D. W. et al. Ig VH gene expression among human follicular lymphomas. Blood 78, 1561–1568 (1991).

    CAS  PubMed  Google Scholar 

  31. Dagklis, A. et al. Immunoglobulin gene repertoire in ocular adnexa lymphomas (OAL): hints on the nature of the antigenic stimulation. Blood (ASH Annual Meeting Abstracts) 112, 623 (2008).

    Google Scholar 

  32. Coupland, S. E., Foss, H. D., Anagnostopoulos, I., Hummel, M. & Stein, H. Immunoglobulin VH gene expression among extranodal marginal zone B-cell lymphomas of the ocular adnexa. Invest. Ophthalmol. Vis. Sci. 40, 555–562 (1999).

    CAS  PubMed  Google Scholar 

  33. Hara, Y. et al. Immunoglobulin heavy chain gene analysis of ocular adnexal extranodal marginal zone B-cell lymphoma. Invest. Ophthalmol. Vis. Sci. 42, 2450–2457 (2001).

    CAS  PubMed  Google Scholar 

  34. Adam, P. et al. Rare occurrence of IgVH gene translocations and restricted IgVH gene repertoire in ocular MALT-type lymphoma. Haematologica 93, 319–320 (2008).

    PubMed  Google Scholar 

  35. Fang, Q., Kannapell, C. C., Fu, S. M., Xu, S. & Gaskin, F. VH and VL gene usage by anti-beta-amyloid autoantibodies in Alzheimer's disease: detection of highly mutated V regions in both heavy and light chains. Clin. Immunol. Immunopathol. 75, 159–167 (1995).

    CAS  PubMed  Google Scholar 

  36. Williams, D. G. & Taylor, P. C. Clonal analysis of immunoglobulin mRNA in rheumatoid arthritis synovium: characterization of expanded IgG3 populations. Eur. J. Immunol. 27, 476–485 (1997).

    CAS  PubMed  Google Scholar 

  37. Silberstein, L. E. et al. Variable region gene analysis of pathologic human autoantibodies to the related i and I red blood cell antigens. Blood 78, 2372–2386 (1991).

    CAS  PubMed  Google Scholar 

  38. Isenberg, D., Spellerberg, M., Williams, W., Griffiths, M. & Stevenson, F. Identification of the 9G4 idiotope in systemic lupus erythematosus. Br. J. Rheumatol. 32, 876–882 (1993).

    CAS  PubMed  Google Scholar 

  39. Yeung, L. et al. Combination of adult inclusion conjunctivitis and mucosa-associated lymphoid tissue (MALT) lymphoma in a young adult. Cornea 23, 71–75 (2004).

    PubMed  Google Scholar 

  40. Lietman, T. et al. Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin. Infect. Dis. 26, 1335–1340 (1998).

    CAS  PubMed  Google Scholar 

  41. Oldstone, M. B. Molecular mimicry and immune-mediated diseases. FASEB J. 12, 1255–1265 (1998).

    CAS  PubMed  Google Scholar 

  42. Negrini, R. et al. Antigenic mimicry between Helicobacter pylori and gastric mucosa in the pathogenesis of body atrophic gastritis. Gastroenterology 111, 655–665 (1996).

    CAS  PubMed  Google Scholar 

  43. Lamb, D. J., El-Sankary, W. & Ferns, G. A. Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis 167, 177–185 (2003).

    CAS  PubMed  Google Scholar 

  44. Pockley, A. G. Heat shock proteins as regulators of the immune response. Lancet 362, 469–476 (2003).

    CAS  PubMed  Google Scholar 

  45. Ishii, E. et al. Immunoglobulin G1 antibody response to Helicobacter pylori heat shock protein 60 is closely associated with low-grade gastric mucosa-associated lymphoid tissue lymphoma. Clin. Diagn. Lab. Immunol. 8, 1056–1059 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferry, J. A. et al. Lymphoma of the ocular adnexa: a study of 353 cases. Am. J. Surg. Pathol. 31, 170–184 (2007).

    PubMed  Google Scholar 

  47. Coupland, S. E. et al. Lymphoproliferative lesions of the ocular adnexa: analysis of 112 cases. Ophthalmology 105, 1430–1441 (1998).

    CAS  PubMed  Google Scholar 

  48. Sjö, L. D. Ophthalmic lymphoma: epidemiology and pathogenesis. Thesis 1. Acta Ophthalmol. 87, 1–20 (2009).

    PubMed  Google Scholar 

  49. Ferreri, A. J. et al. Ocular adnexal MALT lymphoma: an intriguing model for antigen-driven lymphomagenesis and microbial-targeted therapy. Ann. Oncol. 19, 835–846 (2008).

    CAS  PubMed  Google Scholar 

  50. Remstein, E. D. et al. Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am. J. Pathol. 161, 63–71 (2002).

    PubMed  PubMed Central  Google Scholar 

  51. Tanimoto, K. et al. Fluorescence in situ hybridization (FISH) analysis of primary ocular adnexal MALT lymphoma. BMC Cancer 6, 249 (2006).

    PubMed  PubMed Central  Google Scholar 

  52. Ruiz, A. et al. extranodal marginal zone B-cell lymphomas of the ocular adnexa: multiparameter analysis of 34 cases including interphase molecular cytogenetics and PCR for Chlamydia psittaci. Am. J. Surg. Pathol. 31, 792–802 (2007).

    PubMed  Google Scholar 

  53. Martinet, S. et al. Outcome and prognostic factors in orbital lymphoma: a Rare Cancer Network study on 90 consecutive patients treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 55, 892–898 (2003).

    PubMed  Google Scholar 

  54. Uno, T. et al. Radiotherapy for extranodal, marginal zone, B-cell lymphoma of mucosa-associated lymphoid tissue originating in the ocular adnexa: a multiinstitutional, retrospective review of 50 patients. Cancer 98, 865–871 (2003).

    PubMed  Google Scholar 

  55. Tanimoto, K. et al. Long-term follow-up results of no initial therapy for ocular adnexal MALT lymphoma. Ann. Oncol. 17, 135–140 (2006).

    CAS  PubMed  Google Scholar 

  56. Matsuo, T. & Yoshino, T. Long-term follow-up results of observation or radiation for conjunctival malignant lymphoma. Ophthalmology 111, 1233–1237 (2004).

    PubMed  Google Scholar 

  57. Fung, C. Y. et al. Ocular adnexal lymphoma: clinical behavior of distinct World Health Organization classification subtypes. Int. J. Radiat. Oncol. Biol. Phys. 57, 1382–1391 (2003).

    PubMed  Google Scholar 

  58. Ejima, Y. et al. Ocular adnexal mucosa-associated lymphoid tissue lymphoma treated with radiotherapy. Radiother. Oncol. 78, 6–9 (2006).

    PubMed  Google Scholar 

  59. Tsang, R. W. et al. Localized mucosa-associated lymphoid tissue lymphoma treated with radiation therapy has excellent clinical outcome. J. Clin. Oncol. 21, 4157–4164 (2003).

    PubMed  Google Scholar 

  60. Ben Simon, G. J., Cheung, N., McKelvie, P., Fox, R. & McNab, A. A. Oral chlorambucil for extranodal, marginal zone, B-cell lymphoma of mucosa-associated lymphoid tissue of the orbit. Ophthalmology 113, 1209–1213 (2006).

    PubMed  Google Scholar 

  61. Sasai, K. et al. Non-Hodgkin's lymphoma of the ocular adnexa. Acta Oncol. 40, 485–490 (2001).

    CAS  PubMed  Google Scholar 

  62. Zinzani, P. L. et al. Fludarabine-containing chemotherapy as frontline treatment of nongastrointestinal mucosa-associated lymphoid tissue lymphoma. Cancer 100, 2190–2194 (2004).

    CAS  PubMed  Google Scholar 

  63. Jäger, G. et al. Treatment of extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue type with cladribine: a phase II study. J. Clin. Oncol. 20, 3872–3877 (2002).

    PubMed  Google Scholar 

  64. Raderer, M. et al. Phase II study of oxaliplatin for treatment of patients with mucosa-associated lymphoid tissue lymphoma. J. Clin. Oncol. 23, 8442–8446 (2005).

    CAS  PubMed  Google Scholar 

  65. Conconi, A. et al. Clinical activity of rituximab in extranodal marginal zone B-cell lymphoma of MALT type. Blood 102, 2741–2745 (2003).

    CAS  PubMed  Google Scholar 

  66. Nuckel, H., Meller, D., Steuhl, K. P. & Dührsen, U. Anti-CD20 monoclonal antibody therapy in relapsed MALT lymphoma of the conjunctiva. Eur. J. Haematol. 73, 258–262 (2004).

    PubMed  Google Scholar 

  67. Ferreri, A. J. et al. Rituximab in patients with mucosal-associated lymphoid tissue-type lymphoma of the ocular adnexa. Haematologica 90, 1578–1579 (2005).

    CAS  PubMed  Google Scholar 

  68. Esmaeli, B. et al. Prospective trial of targeted radioimmunotherapy with 90Y-ibritumomab tiuxetan (Zevalin) for front-line treatment of early-stage extranodal indolent ocular adnexal lymphoma. Ann. Oncol. 20, 709–714 (2009).

    CAS  PubMed  Google Scholar 

  69. Lachapelle, K. R., Rathee, R., Kratky, V. & Dexter, D. F. Treatment of conjunctival mucosa-associated lymphoid tissue lymphoma with intralesional injection of interferon α2b. Arch. Ophthalmol. 118, 284–285 (2000).

    CAS  PubMed  Google Scholar 

  70. Blasi, M. A. et al. Local chemotherapy with interferon-α for conjunctival mucosa-associated lymphoid tissue lymphoma: a preliminary report. Ophthalmology 108, 559–562 (2001).

    CAS  PubMed  Google Scholar 

  71. Ferreri, A. J. et al. Chlamydia psittaci-eradicating antibiotic therapy in patients with advanced-stage ocular adnexal MALT lymphoma. Ann. Oncol. 19, 194–195 (2008).

    CAS  PubMed  Google Scholar 

  72. Liu, Y. X. et al. Loss of expression of α4β7 integrin and L-selectin is associated with high-grade progression of low-grade MALT lymphoma. Mod. Pathol. 14, 798–805 (2001).

    CAS  PubMed  Google Scholar 

  73. Falkenhagen, K. M., Braziel, R. M., Fraunfelder, F. W. & Smith, J. R. B-cells in ocular adnexal lymphoproliferative lesions express B-cell attracting chemokine 1 (CXCL13). Am. J. Ophthalmol. 140, 335–337 (2005).

    CAS  PubMed  Google Scholar 

  74. Yoo, C. et al. Chlamydia psittaci infection and clinicopathologic analysis of ocular adnexal lymphomas in Korea. Am. J. Hematol. 82, 821–823 (2007).

    PubMed  Google Scholar 

  75. Aigelsreiter, A. et al. Chlamydia psittaci in MALT lymphomas of ocular adnexals: the Austrian experience. Leuk. Res. 32, 1292–1294 (2008).

    PubMed  Google Scholar 

  76. Chanudet, E. et al. Chlamydia psittaci is variably associated with ocular adnexal MALT lymphoma in different geographical regions. J. Pathol. 209, 344–351 (2006).

    CAS  PubMed  Google Scholar 

  77. Gisbert, J. P., García-Buey, L., Pajares, J. M. & Moreno-Otero, R. Prevalence of hepatitis C virus infection in B-cell non-Hodgkin's lymphoma: systematic review and meta-analysis. Gastroenterology 125, 1723–1732 (2003).

    PubMed  Google Scholar 

  78. de la Fouchardiere, A., Vandenesch, F. & Berger, F. Borrelia-associated primary cutaneous MALT lymphoma in a nonendemic region. Am. J. Surg. Pathol. 27, 702–703 (2003).

    PubMed  Google Scholar 

  79. Goteri, G. et al. Clinicopathological features of primary cutaneous B-cell lymphomas from an academic regional hospital in central Italy: no evidence of Borrelia burgdorferi association. Leuk. Lymphoma 48, 2184–2188 (2007).

    PubMed  Google Scholar 

  80. Decaudin, D. et al. Variable association between Chlamydophila psittaci infection and ocular adnexal lymphomas: methodological biases or true geographical variations? Anticancer Drugs 19, 761–765 (2008).

    CAS  PubMed  Google Scholar 

  81. Matthews, J. M. et al. Ocular adnexal lymphoma: no evidence for bacterial DNA associated with lymphoma pathogenesis. Br. J. Haematol. 142, 246–249 (2008).

    CAS  PubMed  Google Scholar 

  82. Chan, C. C. et al. Detection of Helicobacter pylori and Chlamydia pneumoniae genes in primary orbital lymphoma. Trans. Am. Ophthalmol. Soc. 104, 62–70 (2006).

    PubMed  PubMed Central  Google Scholar 

  83. Ferreri, A. J. et al. Association between Helicobacter pylori infection and MALT-type lymphoma of the ocular adnexa: clinical and therapeutic implications. Hematol. Oncol. 24, 33–37 (2006).

    PubMed  Google Scholar 

  84. Sjö, N. C. et al. Role of Helicobacter pylori in conjunctival mucosa-associated lymphoid tissue lymphoma. Ophthalmology 114, 182–186 (2007).

    PubMed  Google Scholar 

  85. Lee, S. B., Yang, J. W. & Kim, C. S. The association between conjunctival MALT lymphoma and Helicobacter pylori. Br. J. Ophthalmol. 92, 534–536 (2008).

    PubMed  Google Scholar 

  86. Goebel, N. et al. Chlamydia psittaci, Helicobacter pylori and ocular adnexal lymphoma—is there an association? The German experience. Leuk. Res. 31, 1450–1452 (2007).

    CAS  PubMed  Google Scholar 

  87. Cohen, V. M., Sweetenham, J. & Singh, A. D. Ocular adnexal lymphoma: what is the evidence for an infectious aetiology? Br. J. Ophthalmol. 92, 446–448 (2008).

    PubMed  Google Scholar 

  88. Arnaud, P. et al. Hepatitis C virus infection and MALT-type ocular adnexal lymphoma. Ann. Oncol. 18, 400–401 (2007).

    CAS  PubMed  Google Scholar 

  89. Ferreri, A. J. et al. Clinical implications of hepatitis C virus infection in MALT-type lymphoma of the ocular adnexa. Ann. Oncol. 17, 769–772 (2006).

    CAS  PubMed  Google Scholar 

  90. Arcaini, L. et al. Prevalence of HCV infection in nongastric marginal zone B-cell lymphoma of MALT. Ann. Oncol. 18, 346–350 (2007).

    CAS  PubMed  Google Scholar 

  91. Harkinezhad, T., Geens, T. & Vanrompay, D. Chlamydophila psittaci infections in birds: a review with emphasis on zoonotic consequences. Vet. Microbiol. 135, 68–77 (2009).

    PubMed  Google Scholar 

  92. Chanudet, E. et al. Chlamydiae and Mycoplasma infections in pulmonary MALT lymphoma. Br. J. Cancer 97, 949–951 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Madico, G., Quinn, T. C., Boman, J. & Gaydos, C. A. Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S–23S spacer rRNA genes. J. Clin. Microbiol. 38, 1085–1093 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tong, C. Y. & Sillis, M. Detection of Chlamydia pneumoniae and Chlamydia psittaci in sputum samples by PCR. J. Clin. Pathol. 46, 313–317 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hill, J. E. et al. Characterization of vaginal microflora of healthy, nonpregnant women by chaperonin-60 sequence-based methods. Am. J. Obstet. Gynecol. 193, 682–692 (2005).

    CAS  PubMed  Google Scholar 

  96. Liu, Y. C. et al. Chlamydia psittaci in ocular adnexal lymphoma: Japanese experience. Leuk. Res. 30, 1587–1589 (2006).

    CAS  PubMed  Google Scholar 

  97. Vargas, R. L. et al. Is there an association between ocular adnexal lymphoma and infection with Chlamydia psittaci? The University of Rochester experience. Leuk. Res. 30, 547–551 (2006).

    PubMed  Google Scholar 

  98. Yakushijin, Y. et al. Absence of chlamydial infection in Japanese patients with ocular adnexal lymphoma of mucosa-associated lymphoid tissue. Int. J. Hematol. 85, 223–230 (2007).

    CAS  PubMed  Google Scholar 

  99. Zhang, G. S. et al. Lack of an association between Chlamydia psittaci and ocular adnexal lymphoma. Leuk. Lymphoma 48, 577–583 (2007).

    CAS  PubMed  Google Scholar 

  100. Pantchev, A., Sting, R., Bauerfeind, R., Tyczka, J. & Sachse, K. New real-time PCR tests for species-specific detection of Chlamydophila psittaci and Chlamydophila abortus from tissue samples. Vet. J. 181, 145–150 (2009).

    CAS  PubMed  Google Scholar 

  101. Sachse, K. et al. Genotyping of Chlamydophila psittaci using a new DNA microarray assay based on sequence analysis of ompA genes. BMC Microbiol. 8, 63 (2008).

    PubMed  PubMed Central  Google Scholar 

  102. Peeling, R. W. et al. Chlamydia pneumoniae serology: interlaboratory variation in microimmunofluorescence assay results. J. Infect. Dis. 181 (Suppl. 3), S426–S429 (2000).

    CAS  PubMed  Google Scholar 

  103. Dowell, S. F. et al. Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin. Infect. Dis. 33, 492–503 (2001).

    CAS  PubMed  Google Scholar 

  104. Bas, S. et al. Chlamydial serology: comparative diagnostic value of immunoblotting, microimmunofluorescence test, and immunoassays using different recombinant proteins as antigens. J. Clin. Microbiol. 39, 1368–1377 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Strålin, K., Fredlund, H. & Olcén, P. Labsystems enzyme immunoassay for Chlamydia pneumoniae also detects Chlamydia psittaci infections. J. Clin. Microbiol. 39, 3425–3426 (2001).

    PubMed  PubMed Central  Google Scholar 

  106. Ruskoné-Fourmestraux, A. et al. Predictive factors for regression of gastric MALT lymphoma after anti-Helicobacter pylori treatment. Gut 48, 297–303 (2001).

    PubMed  Google Scholar 

  107. Abramson, D. H., Rollins, I. & Coleman, M. Periocular mucosa-associated lymphoid/low grade lymphomas: treatment with antibiotics. Am. J. Ophthalmol. 140, 729–730 (2005).

    CAS  PubMed  Google Scholar 

  108. Grünberger, B. et al. Antibiotic treatment is not effective in patients infected with Helicobacter pylori suffering from extragastric MALT lymphoma. J. Clin. Oncol. 24, 1370–1375 (2006).

    PubMed  Google Scholar 

  109. Greco, G., Corrente, M. & Martella, V. Detection of Chlamydophila psittaci in asymptomatic animals. J. Clin. Microbiol. 43, 5410–5411 (2005).

    PubMed  PubMed Central  Google Scholar 

  110. Gracia, E. et al. Low prevalence of Chlamydia psittaci in ocular adnexal lymphomas from Cuban patients. Leuk. Lymphoma 48, 104–108 (2007).

    CAS  PubMed  Google Scholar 

  111. de Cremoux, P. et al. Re: Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J. Natl Cancer Inst. 98, 365–366 (2006).

    PubMed  Google Scholar 

  112. Ferreri, A. J. et al. Bacteria-eradicating therapy for ocular adnexal MALT lymphoma: questions for an open international prospective trial. Ann. Oncol. 17, 1721–1722 (2006).

    CAS  PubMed  Google Scholar 

  113. Daibata, M. et al. Absence of Chlamydia psittaci in ocular adnexal lymphoma from Japanese patients. Br. J. Haematol. 132, 651–652 (2006).

    PubMed  Google Scholar 

  114. Mulder, M. M. et al. No evidence for an association of ocular adnexal lymphoma with Chlamydia psittaci in a cohort of patients from The Netherlands. Leuk. Res. 30, 1305–1307 (2006).

    PubMed  Google Scholar 

  115. Rosado, M. F. et al. Ocular adnexal lymphoma: a clinicopathological study of a large cohort of patients with no evidence for an association with Chlamydia psittaci. Blood 107, 467–472 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the European Community (FP6 VITAL, Contract 037874), the Italian Ministry of Health, Alleanza Contro il Cancro—ISS (ACC-4), the Italian Association for Cancer Research (AIRC). The authors appreciate the excellent technical assistance of M. G. Cangi and L. Pecciarini from the Pathology Unit of the San Raffaele Scientific Institute, Milan, Italy; E. Pasini and S. Bergamin of the Cancer Bio-Immunotherapy Unit, IRCCS National Cancer Institute, Aviano, Italy; N. Vicari, S. Vigo and I. Labalestra of the Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy, and the helpful suggestions of C. Bandi (DIPAV, Sezione di Patologia Generale e Parassitologia, Università degli Studi di Milano, Milan, Italy). We are indebted to M. Guidoboni (Cancer Bio-Immunotherapy Unit, IRCCS National Cancer Institute, Aviano, Italy), A. Giordano Resti (Ophthalmology Unit, San Raffaele Scientific Institute, Milan, Italy), M. M. D'Elios (Department of Internal Medicine, University of Florence, Italy), L. Politi (Neuroradiology Unit, San Raffaele Scientific Institute, Milan, Italy), L. Sacchi (Department of Animal Biology, University of Pavia, Pavia, Italy), and P. Ghia (Lab of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy) for their sustained scientific collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés J. M. Ferreri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreri, A., Dolcetti, R., Magnino, S. et al. Chlamydial infection: the link with ocular adnexal lymphomas. Nat Rev Clin Oncol 6, 658–669 (2009). https://doi.org/10.1038/nrclinonc.2009.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing