Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Src kinases as therapeutic targets for cancer

Abstract

Src family kinases (SFKs) have a critical role in cell adhesion, invasion, proliferation, survival, and angiogenesis during tumor development. SFKs comprise nine family members that share similar structure and function. Overexpression or high activation of SFKs occurs frequently in tumor tissues and they are central mediators in multiple signaling pathways that are important in oncogenesis. SFKs can interact with tyrosine kinase receptors, such as EGFR and the VEGF receptor. SFKs can affect cell proliferation via the Ras/ERK/MAPK pathway and can regulate gene expression via transcription factors such as STAT molecules. SFKs can also affect cell adhesion and migration via interaction with integrins, actins, GTPase-activating proteins, scaffold proteins, such as p130CAS and paxillin, and kinases such as focal adhesion kinases. Furthermore, SFKs can regulate angiogenesis via gene expression of angiogenic growth factors, such as fibroblast growth factor, VEGF, and interleukin 8. On the basis of these important findings, small-molecule SFK inhibitors have been developed and are undergoing early phase clinical testing. In preclinical studies these agents can suppress tumor growth and metastases. The agents seem to be safe in humans and could add to the therapeutic arsenal against subsets of cancers.

Key Points

  • Src-family kinases (SFKs) are central mediators that involve multiple pathways and can interact with tyrosine kinase receptors, representing a promising target to stop the growth of tumor cells

  • SFKs can regulate gene expression and affect cell adhesion via interaction with integrins, actins, and focal adhesion kinases

  • SFKs consist of nine family members, each composed of four common Src homology domains (SH1, SH2, SH3, SH4) that share similar structures and functions

  • We have a good understanding of how SFKs become activated in human tumors; however, given the multiple functions SFKs regulate, finding the optimal use of SFK inhibitors needs to be further investigated

  • The SFK inhibitors dasatinib, AZD0530, and SKI-606 seem to have promising preclinical activity, and early phase clinical trials of these agents are underway

  • There is a need to identify biomarkers to guide SFK-inhibitor monotherapy and combination therapies using SFK inhibitors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and activation of c-Src.
Figure 2: SFK signaling pathways and function.
Figure 3: Tumor and stromal cell angiogenesis processes are regulated by SFKs.

Similar content being viewed by others

References

  1. Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397–411 (1911).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Martin, G. S. The hunting of the Src. Nat. Rev. Mol. Cell Biol. 2, 467–475 (2001).

    CAS  PubMed  Google Scholar 

  3. Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).

    CAS  PubMed  Google Scholar 

  4. Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell Biol. 6, 4396–4408 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mayer, B. J., Hamaguchi, M. & Hanafusa, H. A novel viral oncogene with structural similarity to phospholipase C. Nature 332, 272–275 (1988).

    CAS  PubMed  Google Scholar 

  6. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    CAS  PubMed  Google Scholar 

  7. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    CAS  PubMed  Google Scholar 

  8. Yeatman, T. J. A renaissance for SRC. Nat. Rev. Cancer 4, 470–480 (2004).

    CAS  PubMed  Google Scholar 

  9. Irby, R. B. & Yeatman, T. J. Role of Src expression and activation in human cancer. Oncogene 19, 5636–5642 (2000).

    CAS  PubMed  Google Scholar 

  10. Corey, S. J. & Anderson, S. M. Src-related protein tyrosine kinases in hematopoiesis. Blood 93, 1–14 (1999).

    CAS  PubMed  Google Scholar 

  11. Finn, R. S. Targeting Src in breast cancer. Ann. Oncol. 19, 1379–1386; (2008).

    CAS  PubMed  Google Scholar 

  12. Giaccone, G. & Zucali, P. A. Src as a potential therapeutic target in non-small-cell lung cancer. Ann. Oncol. 19, 1219–1223; (2008).

    CAS  PubMed  Google Scholar 

  13. Yu, H. et al. Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 258, 1665–1668 (1992).

    CAS  PubMed  Google Scholar 

  14. Cartwright, C. A. et al. Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain. Cell 49, 83–91 (1987).

    CAS  PubMed  Google Scholar 

  15. Yaffe, M. B. Phosphotyrosine-binding domains in signal transduction. Nat. Rev. Mol. Cell Biol. 3, 177–186 (2002).

    CAS  PubMed  Google Scholar 

  16. Cowan-Jacob, S. W. et al. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 13, 861–871 (2005).

    CAS  PubMed  Google Scholar 

  17. Irby, R. B. et al. Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet. 21, 187–190 (1999).

    CAS  PubMed  Google Scholar 

  18. Zheng, X. M., Wang, Y. & Pallen, C. J. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359, 336–339 (1992).

    CAS  PubMed  Google Scholar 

  19. Brunton, V. G., MacPherson, I. R. & Frame, M. C. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim. Biophys. Acta 1692, 121–144 (2004).

    CAS  PubMed  Google Scholar 

  20. Sakai, T., Jove, R., Fassler, R. & Mosher, D. F. Role of the cytoplasmic tyrosines of beta 1A integrins in transformation by v-src. Proc. Natl Acad. Sci. USA 98, 3808–3813 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Datta, A., Huber, F. & Boettiger, D. Phosphorylation of beta3 integrin controls ligand binding strength. J. Biol. Chem. 277, 3943–3949 (2002).

    CAS  PubMed  Google Scholar 

  22. Arthur, W. T. & Burridge, K. RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol. Biol. Cell 12, 2711–2720 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669 (2008).

    CAS  PubMed  Google Scholar 

  24. Irby, R. B. & Yeatman, T. J. Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res. 62, 2669–2674 (2002).

    CAS  PubMed  Google Scholar 

  25. Behrens, J., Mareel, M. M., Van Roy, F. M. & Birchmeier, W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J. Cell Biol. 108, 2435–2447 (1989).

    CAS  PubMed  Google Scholar 

  26. Calautti, E. et al. Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J. Cell Biol. 141, 1449–1465 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reynolds, A. B., Roesel, D. J., Kanner, S. B. & Parsons, J. T. Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol. Cell Biol. 9, 629–638 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reynolds, A. B. & Roczniak-Ferguson, A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 23, 7947–7956 (2004).

    CAS  PubMed  Google Scholar 

  29. Timpson, P., Jones, G. E., Frame, M. C. & Brunton, V. G. Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Curr. Biol. 11, 1836–1846 (2001).

    CAS  PubMed  Google Scholar 

  30. Hsia, D. A. et al. Differential regulation of cell motility and invasion by FAK. J. Cell Biol. 160, 753–767 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Siesser, P. M. & Hanks, S. K. The signaling and biological implications of FAK overexpression in cancer. Clin. Cancer Res. 12, 3233–3237 (2006).

    CAS  PubMed  Google Scholar 

  32. Datta, K., Bellacosa, A., Chan, T. O. & Tsichlis, P. N. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J. Biol. Chem. 271, 30835–30839 (1996).

    CAS  PubMed  Google Scholar 

  33. Parsons, J. T. & Parsons, S. J. Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr. Opin. Cell Biol. 9, 187–192 (1997).

    CAS  PubMed  Google Scholar 

  34. Belsches, A. P., Haskell, M. D. & Parsons, S. J. Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Front. Biosci. 2, d501–d518 (1997).

    CAS  PubMed  Google Scholar 

  35. Biscardi, J. S., Ishizawar, R. C., Silva, C. M. & Parsons, S. J. Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2, 203–210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimri, M. et al. Modeling breast cancer-associated c-Src and EGFR overexpression in human MECs: c-Src and EGFR cooperatively promote aberrant three-dimensional acinar structure and invasive behavior. Cancer Res. 67, 4164–4172 (2007).

    CAS  PubMed  Google Scholar 

  37. Ishizawar, R. C., Miyake, T. & Parsons, S. J. c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 26, 3503–3510 (2007).

    CAS  PubMed  Google Scholar 

  38. Mori, S. et al. Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J. 12, 2257–2264 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kypta, R. M., Goldberg, Y., Ulug, E. T. & Courtneidge, S. A. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62, 481–492 (1990).

    CAS  PubMed  Google Scholar 

  40. Hansen, K. et al. Mutation of a Src phosphorylation site in the PDGF beta-receptor leads to increased PDGF-stimulated chemotaxis but decreased mitogenesis. EMBO J. 15, 5299–5313 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    CAS  PubMed  Google Scholar 

  42. Kanda, S., Miyata, Y., Kanetake, H. & Smithgall, T. E. Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (Review). Int. J. Mol. Med. 20, 113–121 (2007).

    CAS  PubMed  Google Scholar 

  43. Mukhopadhyay, D., Tsiokas, L. & Sukhatme, V. P. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res. 55, 6161–6165 (1995).

    CAS  PubMed  Google Scholar 

  44. Eliceiri, B. P. et al. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J. Cell Biol. 157, 149–160 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie, K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 12, 375–391 (2001).

    CAS  PubMed  Google Scholar 

  46. Trevino, J. G. et al. Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Res. 65, 7214–7222 (2005).

    CAS  PubMed  Google Scholar 

  47. Yeh, M. et al. Oxidized phospholipids increase interleukin 8 (IL-8) synthesis by activation of the c-src/signal transducers and activators of transcription (STAT)3 pathway. J. Biol. Chem. 279, 30175–30181 (2004).

    CAS  PubMed  Google Scholar 

  48. Petreaca, M. L., Yao, M., Liu, Y., Defea, K. & Martins-Green, M. Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol. Biol. Cell 18, 5014–5023 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lesslie, D. P. et al. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br. J. Cancer 94, 1710–1717 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, Y. M. et al. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J. Biol. Chem. 277, 6799–6805 (2002).

    CAS  PubMed  Google Scholar 

  51. Hanke, J. H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    CAS  PubMed  Google Scholar 

  52. Zhang, J. et al. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am. J. Pathol. 170, 366–376 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kopetz, S., Shah, A. N. & Gallick, G. E. Src continues aging: current and future clinical directions. Clin. Cancer Res. 13, 7232–7236 (2007).

    CAS  PubMed  Google Scholar 

  54. Song, L., Turkson, J., Karras, J. G., Jove, R. & Haura, E. B. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene 22, 4150–4165 (2003).

    CAS  PubMed  Google Scholar 

  55. Niu, G. et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21, 7001–7010 (2002).

    CAS  PubMed  Google Scholar 

  56. Malek, R. L. et al. Identification of Src transformation fingerprint in human colon cancer. Oncogene 21, 7256–7265 (2002).

    CAS  PubMed  Google Scholar 

  57. Blake, R. A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell Biol. 20, 9018–9027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng, H. Straub, S. G., Sharp, G. W. Inhibitory role of Src family tyrosine kinases on Ca2+-dependent insulin release. Am. J. Physiol. Endocrinol. Metab. 292, E845–E852 (2007)

    CAS  PubMed  Google Scholar 

  59. Nam, S. et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res. 65, 9185–9189 (2005).

    CAS  PubMed  Google Scholar 

  60. Trevino, J. G. et al. Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am. J. Pathol. 168, 962–972 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Song, L. et al. Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival. Cancer Res. 66, 5542–5548 (2006).

    CAS  PubMed  Google Scholar 

  62. Shor, A. C. et al. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res. 67, 2800–2808 (2007).

    CAS  PubMed  Google Scholar 

  63. Sen, B., Saigal, B., Parikh, N., Gallick, G. & Johnson, F. M. Sustained Src inhibition results in signal transducer and activator of transcription 3 (STAT3) activation and cancer cell survival via altered Janus-activated kinase-STAT3 binding. Cancer Res. 69, 1958–1965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Herynk, M. H. et al. Cooperative action of tamoxifen and c-Src inhibition in preventing the growth of estrogen receptor-positive human breast cancer cells. Mol. Cancer Ther. 5, 3023–3031 (2006).

    CAS  PubMed  Google Scholar 

  65. Hiscox, S., Morgan, L., Green, T. & Nicholson, R. I. Src as a therapeutic target in anti-hormone/anti-growth factor-resistant breast cancer. Endocr. Relat. Cancer 13 (Suppl. 1), S53–S59 (2006).

    CAS  PubMed  Google Scholar 

  66. Golas, J. M. et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 63, 375–381 (2003).

    CAS  PubMed  Google Scholar 

  67. Golas, J. M. et al. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models. Cancer Res. 65, 5358–5364 (2005).

    CAS  PubMed  Google Scholar 

  68. Coluccia, A. M. et al. SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling. Cancer Res. 66, 2279–2286 (2006).

    CAS  PubMed  Google Scholar 

  69. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    CAS  PubMed  Google Scholar 

  70. Remsing Rix, L. L. et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23, 477–485 (2009).

    CAS  PubMed  Google Scholar 

  71. Evans, T. R. et al. A dose-escalation study of SRC and multikinase inhibitor BMS-354825 in patients with GIST and other solid tumors (Abstract). J. Clin. Oncol. 23 (Suppl.), 3034 (2005).

    Google Scholar 

  72. Messersmith, W. A. et al. Bosutinib (SKI-606), a dual Src/Abl tyrosine kinase inhibitor: preliminary results from a phase I study in patients with advanced malignant solid tumors [abstract]. ASCO Meeting Abstracts 25, a3552 (2007).

    Google Scholar 

  73. Tan, M. et al. ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res. 65, 1858–1867 (2005).

    CAS  PubMed  Google Scholar 

  74. Knowlden, J. M. et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144, 1032–1044 (2003).

    CAS  PubMed  Google Scholar 

  75. Masaki, T. et al. pp60c-src activation in lung adenocarcinoma. Eur. J. Cancer 39, 1447–1455 (2003).

    CAS  PubMed  Google Scholar 

  76. Kaplan, K. B., Swedlow, J. R., Morgan, D. O. & Varmus, H. E. c-Src enhances the spreading of src−/− fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 12, 1505–1517 (1995).

    Google Scholar 

  77. Hiscox, S. et al. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res. Treat. 97, 263–274 (2006).

    CAS  PubMed  Google Scholar 

  78. Jallal. H, et al. Src/Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth, and metastasis in vitro and in vivo. Cancer Res. 67, 1580–1588 (2007).

    CAS  PubMed  Google Scholar 

  79. Mazurenko, N. N., Kogan, E. A., Zborovskaya, I. B. & Kisseljov, F. L. Expression of pp60c-src in human small cell and non-small cell lung carcinomas. Eur. J. Cancer 28, 372–377 (1992).

    CAS  PubMed  Google Scholar 

  80. Johnson, F. M., Saigal, B., Talpaz, M. & Donato, N. J. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin. Cancer Res. 11, 6924–6932 (2005).

    CAS  PubMed  Google Scholar 

  81. Chiappori, A. A. et al. Phase I trial evaluating the epidermal growth factor receptor inhibitor erlotinib in combination with the SRC kinase inhibitor dasatinib for patients with recurrent non-small cell lung cancer (NSCLC) [abstract]. ASCO Meeting Abstracts 26, a14605 (2008).

    Google Scholar 

  82. Migliaccio, A. et al. Steroid receptor regulation of epidermal growth factor signaling through Src in breast and prostate cancer cells: steroid antagonist action. Cancer Res. 65, 10585–10593 (2005).

    CAS  PubMed  Google Scholar 

  83. Yu, E. Y. et al. Dasatinib in patients with hormone-refractory progressive prostate cancer: A phase II study [abstract]. ASCO Meeting Abstracts 26, a5156 (2008).

    Google Scholar 

  84. Wainberg, Z. A. et al. Identification of predictive markers of response in colorectal cancer following treatment with dasatinib, an orally active tyrosine kinase inhibitor of ABL and SRC. ASCO Meeting Abstracts 26, a14688 (2008).

    Google Scholar 

  85. Koppikar, P. et al. Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin. Cancer Res. 14, 4284–4291 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Grandis, J. R. & Tweardy, D. J. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 53, 3579–3584 (1993).

    CAS  PubMed  Google Scholar 

  87. Temam, S. et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J. Clin. Oncol. 25, 2164–2170 (2007).

    CAS  PubMed  Google Scholar 

  88. Esteve, F. R. et al. Phase I trial of cetuximab (C) and dasatinib (D) in patients (pts) with advanced solid malignancies [abstract]. ASCO Meeting Abstracts 26, 14668 (2008).

    Google Scholar 

  89. Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000 (2004).

    CAS  PubMed  Google Scholar 

  90. Alvarez, R. H., Kantarjian, H. M. & Cortes, J. E. The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors. Cancer 107, 1918–1929 (2006).

    CAS  PubMed  Google Scholar 

  91. Danhauser-Riedl, S., Warmuth, M., Druker, B. J., Emmerich, B. & Hallek, M. Activation of Src kinases p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res. 56, 3589–3596 (1996).

    CAS  PubMed  Google Scholar 

  92. Ptasznik, A. et al. Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells. J. Exp. Med. 196, 667–678 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hu, Y. et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat. Genet. 36, 453–461 (2004).

    CAS  PubMed  Google Scholar 

  94. Donato, N. J. et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101, 690–698 (2003).

    CAS  PubMed  Google Scholar 

  95. Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354, 2531–2541 (2006).

    CAS  PubMed  Google Scholar 

  96. Shah, N. et al. Correlation of clinical response to BMS-354825 with BCR-ABL mutation status in imatinib-resistant patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-associated acute lymphoblastic leukemia (Ph+ ALL) [abstract]. ASCO Meeting Abstracts 23, a6521 (2005).

    Google Scholar 

  97. Miyazaki, T., Neff, L., Tanaka, S., Horne, W. C. & Baron, R. Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J. Cell Biol. 160, 709–718 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, S. E. et al. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J. Biol. Chem. 276, 49343–49349 (2001).

    CAS  PubMed  Google Scholar 

  99. Marzia, M. et al. Decreased c-Src expression enhances osteoblast differentiation and bone formation. J. Cell Biol. 151, 311–320 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bakewell, S. J. et al. Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc. Natl Acad. Sci. USA 100, 14205–14210 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tabernero, J. et al. Phase I study of AZD0530, an oral potent inhibitor of Src kinase: First demonstration of inhibition of Src activity in human cancers. ASCO Meeting Abstracts 25, a3520 (2007).

    Google Scholar 

  102. Shakespeare, W. et al. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Proc. Natl Acad. Sci. USA 97, 9373–9378 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sawyer, T. et al. A new class of small-molecule therapeutics for osteolytic bone metastasis: Discovery of novel bone-targeted src tyrosine kinase inhibitors having potent in vitro and in vivo activities [abstract]. Proc. Am. Soc. Clin. Oncol. 22, a977 (2003).

    Google Scholar 

  104. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric B. Haura.

Ethics declarations

Competing interests

E. Haura declares an association with Bristol-Myers Squibb Oncology. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, L., Song, L. & Haura, E. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6, 587–595 (2009). https://doi.org/10.1038/nrclinonc.2009.129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing