Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of gut microbiota in atherosclerosis

Key Points

  • Microorganisms that reside in the human body, the majority of which colonize the gut, might affect host physiology in various ways

  • Bacteria from the gut or the oral cavity might translocate to atherosclerotic plaques and could affect the development of atherosclerosis and cardiovascular disease

  • Microbial transplantations in mice influence diet-enhanced susceptibility to atherosclerosis and thrombosis

  • Dietary components can either alter the composition of gut microbiota or be processed into metabolites that can delay or accelerate the development of atherosclerosis

  • Trimethylamine N-oxide is a potentially harmful bacterial metabolite that influences cholesterol metabolism and thrombosis activity

  • To determine the role of the (gut) microbiota in cardiovascular disease and atherosclerosis, the underlying mechanisms need to be further elucidated

Abstract

Infections have been linked to the development of cardiovascular disease and atherosclerosis. Findings from the past decade have identified microbial ecosystems residing in different habitats of the human body that contribute to metabolic and cardiovascular-related disorders. In this Review, we describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based on microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Body sites of microbiota that influences atherosclerosis.
Figure 2: Microbiota-related pathways in atherosclerosis.

Similar content being viewed by others

References

  1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  2. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Ott, S. J. et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113, 929–937 (2006).

    Article  PubMed  Google Scholar 

  6. Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4592–4598 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Trevisan, M. & Dorn, J. The relationship between periodontal disease (PD) and cardiovascular disease (CVD). Mediterr. J. Hematol. Infect. Dis. 2, e2010030 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mattila, K. J. et al. Association between dental health and acute myocardial infarction. BMJ 298, 779–781 (1989).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. de Oliveira, C., Watt, R. & Hamer, M. Toothbrushing, inflammation, and risk of cardiovascular disease: results from Scottish Health Survey. BMJ 340, c2451 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fak, F., Tremaroli, V., Bergstrom, G. & Backhed, F. Oral microbiota in patients with atherosclerosis. Atherosclerosis 243, 573–578 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Hayashi, C. et al. Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses. J. Innate Immun. 2, 334–343 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hayashi, C. et al. Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 215, 52–59 (2011).

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, T. et al. Aggregatibacter actinomycetemcomitans accelerates atherosclerosis with an increase in atherogenic factors in spontaneously hyperlipidemic mice. FEMS Immunol. Med. Microbiol. 59, 143–151 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Emoto, T. et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels http://dx.doi.org/10.1007/s00380-016-0841-y (2016).

  16. Emoto, T. et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb. 23, 908–921 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shor, A., Kuo, C. C. & Patton, D. L. Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S. Afr. Med. J. 82, 158–161 (1992).

    PubMed  CAS  Google Scholar 

  18. Blasi, F. et al. Detection of Chlamydia pneumoniae but not Helicobacter pylori in atherosclerotic plaques of aortic aneurysms. J. Clin. Microbiol. 34, 2766–2769 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Thomas, M. et al. Relation between direct detection of Chlamydia pneumoniae DNA in human coronary arteries at postmortem examination and histological severity (Stary grading) of associated atherosclerotic plaque. Circulation 99, 2733–2736 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. Gibbs, R. G. et al. Chlamydia pneumoniae does not influence atherosclerotic plaque behavior in patients with established carotid artery stenosis. Stroke 31, 2930–2935 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. Berger, M. et al. Chlamydia pneumoniae DNA in non-coronary atherosclerotic plaques and circulating leukocytes. J. Lab. Clin. Med. 136, 194–200 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. Nadareishvili, Z. G. et al. Increased CD8+ T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke 32, 1966–1972 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. Johnston, S. C. et al. C-reactive protein levels and viable Chlamydia pneumoniae in carotid artery atherosclerosis. Stroke 32, 2748–2752 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. Calandrini, C. A. et al. Microbial composition of atherosclerotic plaques. Oral Dis. 20, e128–e134 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Mitra, S. et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome 3, 38 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rosenfeld, M. E. & Campbell, L. A. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb. Haemost. 106, 858–867 (2011).

    Article  PubMed  CAS  Google Scholar 

  27. Epstein, S. E. et al. Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb. Vasc. Biol. 20, 1417–1420 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. Smeeth, L. et al. Risk of myocardial infarction and stroke after acute infection or vaccination. N. Engl. J. Med. 351, 2611–2618 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Filardo, S., Di Pietro, M., Farcomeni, A., Schiavoni, G. & Sessa, R. Chlamydia pneumoniae-mediated inflammation in atherosclerosis: a meta-analysis. Mediators Inflamm. 2015, 378658 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hizo-Abes, P. et al. Cardiovascular disease after Escherichia coli O157:H7 gastroenteritis. CMAJ 185, E70–E77 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Andraws, R., Berger, J. S. & Brown, D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 293, 2641–2647 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Grayston, J. T. Antibiotic treatment of atherosclerotic cardiovascular disease. Circulation 107, 1228–1230 (2003).

    Article  PubMed  Google Scholar 

  33. O'Connor, C. M. et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 290, 1459–1466 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Grayston, J. T. et al. Azithromycin for the secondary prevention of coronary events. N. Engl. J. Med. 352, 1637–1645 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Cannon, C. P. et al. Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. N. Engl. J. Med. 352, 1646–1654 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Jespersen, C. M. et al. Randomised placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. BMJ 332, 22–27 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Elkind, M. S. et al. Infectious burden and carotid plaque thickness: the northern Manhattan study. Stroke 41, e117–e122 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Epstein, S. E., Zhu, J., Najafi, A. H. & Burnett, M. S. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation 119, 3133–3141 (2009).

    Article  PubMed  CAS  Google Scholar 

  40. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. Ostos, M. A., Recalde, D., Zakin, M. M. & Scott-Algara, D. Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation. FEBS Lett. 519, 23–29 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Rocha, D. M., Caldas, A. P., Oliveira, L. L., Bressan, J. & Hermsdorff, H. H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 244, 211–215 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10, 416–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Edfeldt, K., Swedenborg, J., Hansson, G. K. & Yan, Z. Q. Expression of Toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158–1161 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, X. H. et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104, 3103–3108 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, K. et al. Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis: evidence from meta-analysis. Thromb. Res. 130, e203–208 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Yusuf, S., Reddy, S., Ounpuu, S. & Anand, S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    Article  PubMed  CAS  Google Scholar 

  58. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    PubMed  CAS  Google Scholar 

  59. Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Li, F. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4, 2384 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Jiang, C. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125, 386–402 (2015).

    Article  PubMed  Google Scholar 

  62. Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    Article  PubMed  CAS  Google Scholar 

  63. Parseus, A. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut http://dx.doi.org/10.1136/gutjnl-2015-310283 (2016).

  64. Lambert, G. et al. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278, 2563–2570 (2003).

    Article  PubMed  CAS  Google Scholar 

  65. Miyazaki-Anzai, S., Masuda, M., Levi, M., Keenan, A. L. & Miyazaki, M. Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis. PLoS ONE 9, e108270 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hartman, H. B. et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR−/− and apoE−/− mice. J. Lipid Res. 50, 1090–1100 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Heart Circ. Physiol. 296, H272–H281 (2009).

    Article  PubMed  CAS  Google Scholar 

  68. Hanniman, E. A., Lambert, G., McCarthy, T. C. & Sinal, C. J. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J. Lipid Res. 46, 2595–2604 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Guo, G. L. et al. Effects of FXR in foam-cell formation and atherosclerosis development. Biochim. Biophys. Acta 1761, 1401–1409 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zhang, Y. et al. FXR deficiency causes reduced atherosclerosis in Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 26, 2316–2321 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang, Q. et al. FXR-mediated regulation of angiotensin type 2 receptor expression in vascular smooth muscle cells. Cardiovasc. Res. 77, 560–569 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. He, F. et al. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ. Res. 98, 192–199 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. Sonnenburg, J. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tilg, H. & Moschen, A. R. Food, immunity, and the microbiome. Gastroenterology 148, 1107–1119 (2015).

    Article  PubMed  Google Scholar 

  76. Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101.e2 (2012).

    Article  PubMed  CAS  Google Scholar 

  77. Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. Li, D. et al. Metabonomic changes associated with atherosclerosis progression for LDLR−/− mice. J. Proteome Res. 14, 2237–2254 (2015).

    Article  PubMed  CAS  Google Scholar 

  79. Ghosh, S. S., Bie, J., Wang, J. & Ghosh, S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR−/− mice—role of intestinal permeability and macrophage activation. PLoS ONE 9, e108577 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Stepankova, R. et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J. Atheroscler. Thromb. 17, 796–804 (2010).

    Article  PubMed  CAS  Google Scholar 

  81. Wright, S. D. et al. Infectious agents are not necessary for murine atherogenesis. J. Exp. Med. 191, 1437–1442 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. O'Connor, A., Quizon, P. M., Albright, J. E., Lin, F. T. & Bennett, B. J. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm. Genome 25, 583–599 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Org, E. et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 25, 1558–1569 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Koeth, R. A. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Koeth, R. A. et al. γ-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO. Cell Metab. 20, 799–812 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Skagen, K. et al. The carnitine–butyrobetaine–trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis 247, 64–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang, Z. et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 35, 904–910 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mente, A. et al. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can. J. Cardiol. 31, 1189–1194 (2015).

    Article  PubMed  Google Scholar 

  91. Tang, W. H. et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J. Card. Fail. 21, 91–96 (2015).

    Article  PubMed  CAS  Google Scholar 

  92. Tang, W. H. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014).

    Article  PubMed  CAS  Google Scholar 

  93. Troseid, M. et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med. 277, 717–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Bennett, B. J. et al. Genetic architecture of atherosclerosis in mice: a systems genetics analysis of common inbred strains. PLoS Genet. 11, e1005711 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Gregory, J. C. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290, 5647–5660 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6, e02481 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Collins, H. L. et al. L-carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 244, 29–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Seldin, M. M. et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J. Am. Heart Assoc. 5, e002767 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Shih, D. M. et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J. Lipid Res. 56, 22–37 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Warrier, M. et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 10, 326–338 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Miao, J. et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 6, 6498 (2015).

    Article  PubMed  CAS  Google Scholar 

  104. Cashman, J. R. et al. Biochemical and clinical aspects of the human flavin-containing monooxygenase form 3 (FMO3) related to trimethylaminuria. Curr. Drug Metab. 4, 151–170 (2003).

    Article  PubMed  CAS  Google Scholar 

  105. Wang, Z. N. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chen, M. L. et al. Resveratrol attenuates trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 7, e02210-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sahyoun, N. R., Jacques, P. F., Zhang, X. L., Juan, W. & McKeown, N. M. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am. J. Clin. Nutr. 83, 124–131 (2006).

    Article  PubMed  CAS  Google Scholar 

  110. Rault-Nania, M. H. et al. Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice. Br. J. Nutr. 96, 840–844 (2006).

    Article  PubMed  CAS  Google Scholar 

  111. Karlsson, C. et al. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis 208, 228–233 (2010).

    Article  PubMed  CAS  Google Scholar 

  112. Naruszewicz, M., Johansson, M. L., Zapolska-Downar, D. & Bukowska, H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am. J. Clin. Nutr. 76, 1249–1255 (2002).

    Article  PubMed  CAS  Google Scholar 

  113. Taranto, M. P., Medici, M., Perdigon, G., Ruiz Holgado, A. P. & Valdez, G. F. Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in mice. J. Dairy Sci. 83, 401–403 (2000).

    Article  PubMed  CAS  Google Scholar 

  114. Andrade, S. & Borges, N. Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J. Dairy Res. 76, 469–474 (2009).

    Article  PubMed  CAS  Google Scholar 

  115. London, L. E. et al. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice. J. Nutr. 144, 1956–1962 (2014).

    Article  PubMed  CAS  Google Scholar 

  116. Fak, F. & Backhed, F. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. PLoS ONE 7, e46837 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Portugal, L. R. et al. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz. J. Med. Biol. Res. 39, 629–635 (2006).

    Article  PubMed  CAS  Google Scholar 

  118. Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W. & Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− Mice. Circulation 133, 2434–2446 (2016).

    Article  PubMed  CAS  Google Scholar 

  122. Byrd, A. L. & Segre, J. A. Infectious disease. Adapting Koch's postulates. Science 351, 224–226 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Anna Hallén, Walleneberg Laboratory at University of Gothenburg, Sweden, for assistance with figures and artwork. The authors' laboratory is supported by grants from AFA-insurances, the Ragnar Söderberg's Foundation, the Swedish Foundation for Strategic Research, the Swedish Heart Lung Foundation, the Swedish Research Council, Torsten Söderberg's, and LUA-ALF grants from Västra Götalandsregionen. F.B. is a recipient of ERC consolidator Grant 2013 (European Research Council, Consolidator grant 615362-METABASE).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Fredrik Bäckhed.

Ethics declarations

Competing interests

F.B. is founder and shareholder of Metabogen AB. A.L.J. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonsson, A., Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 14, 79–87 (2017). https://doi.org/10.1038/nrcardio.2016.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing