Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of biomechanical forces in the natural history of coronary atherosclerosis

Key Points

  • Atherosclerotic plaques are not uniformly distributed throughout the coronary tree, indicating that local mechanical factors might determine plaque development and growth

  • Blood flow and particularly wall shear stress heavily influence endothelial function through diverse mechanisms

  • Biomechanical forces promote adverse changes in plaque composition, promoting a high-risk plaque phenotype that is more prone to rupture, and can result in sudden cardiac events

  • Plaque structural stress is determined by plaque composition, with plaque rupture occurring when plaque structural stress exceeds plaque strength

  • Prospective, observational studies suggest that integrating biomechanical parameters can improve our ability to identify the patients at highest risk of rapid disease progression or plaque rupture

Abstract

Atherosclerosis remains a major cause of morbidity and mortality worldwide, and a thorough understanding of the underlying pathophysiological mechanisms is crucial for the development of new therapeutic strategies. Although atherosclerosis is a systemic inflammatory disease, coronary atherosclerotic plaques are not uniformly distributed in the vascular tree. Experimental and clinical data highlight that biomechanical forces, including wall shear stress (WSS) and plaque structural stress (PSS), have an important role in the natural history of coronary atherosclerosis. Endothelial cell function is heavily influenced by changes in WSS, and longitudinal animal and human studies have shown that coronary regions with low WSS undergo increased plaque growth compared with high WSS regions. Local alterations in WSS might also promote transformation of stable to unstable plaque subtypes. Plaque rupture is determined by the balance between PSS and material strength, with plaque composition having a profound effect on PSS. Prospective clinical studies are required to ascertain whether integrating mechanical parameters with medical imaging can improve our ability to identify patients at highest risk of rapid disease progression or sudden cardiac events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomechanical forces in atherosclerosis.
Figure 2: Wall shear stress calculations.
Figure 3: Plaque structural stress calculations.
Figure 4: Proinflammatory pathways regulated by mechanical sensing.

Similar content being viewed by others

References

  1. Yeh, R. W. et al. Population trends in the incidence and outcomes of acute myocardial infarction. N. Engl. J. Med. 362, 2155–2165 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Celermajer, D. S., Chow, C. K., Marijon, E., Anstey, N. M. & Woo, K. S. Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J. Am. Coll. Cardiol. 60, 1207–1216 (2012).

    Article  PubMed  Google Scholar 

  3. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Stary, H. C. et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89, 2462–2478 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Kubo, T. et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J. Am. Coll. Cardiol. 55, 1590–1597 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Raber, L. et al. Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur. Heart J. 36, 490–500 (2015).

    Article  PubMed  Google Scholar 

  7. Calvert, P. A. et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc. Imaging 4, 894–901 (2011).

    Article  PubMed  Google Scholar 

  8. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, J. M. et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur. Heart J. 35, 639–647 (2014).

    Article  PubMed  Google Scholar 

  10. Pedrigi, R. M. et al. Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress. Arteriosclerosis Thromb. 34, 2224–2231 (2014).

    Article  CAS  Google Scholar 

  11. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Chiu, J.-J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011).

    Article  PubMed  Google Scholar 

  14. Soulis, J. V., Farmakis, T. M., Giannoglou, G. D. & Louridas, G. E. Wall shear stress in normal left coronary artery tree. J. Biomech. 39, 742–749 (2006).

    Article  PubMed  Google Scholar 

  15. Zarins, C. K. et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53, 502–514 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Ku, D. N., Giddens, D. P., Zarins, C. K. & Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5, 293–302 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Kwak, B. R. et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35, 3013–3020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, C. A., Fonte, T. A. & Min, J. K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61, 2233–2241 (2013).

    Article  PubMed  Google Scholar 

  19. Mejia, J., Mongrain, R. & Bertrand, O. F. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. J. Biomech. Eng. 133, 074501 (2011).

    Article  PubMed  Google Scholar 

  20. Timmins, L. H. et al. Focal association between wall shear stress and clinical coronary artery disease progression. Ann. Biomed. Eng. 43, 94–106 (2015).

    Article  PubMed  Google Scholar 

  21. Morbiducci, U. et al. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J. Biomech. 44, 2427–2438 (2011).

    Article  PubMed  Google Scholar 

  22. Li, Y. et al. Impact of side branch modeling on computation of endothelial shear stress in coronary artery disease: coronary tree reconstruction by fusion of 3D angiography and OCT. J. Am. Coll. Cardiol. 66, 125–135 (2015).

    Article  PubMed  Google Scholar 

  23. Peiffer, V., Sherwin, S. J. & Weinberg, P. D. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc. Res. 99, 242–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teng, Z. et al. Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) study. Circ. Cardiovasc. Imaging 7, 461–470 (2014).

    Article  PubMed  Google Scholar 

  25. Yuan, J. et al. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis. Int. J. Numer. Method Biomed. Eng. 13, e02722 (2015).

    Article  Google Scholar 

  26. Sadat, U., Teng, Z. & Gillard, J. H. Biomechanical structural stresses of atherosclerotic plaques. Expert Rev. Cardiovasc. Ther. 8, 1469–1481 (2010).

    Article  PubMed  Google Scholar 

  27. Fan, R. et al. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study. Biomed. Eng. Online 13, 13–32 (2014).

    Article  Google Scholar 

  28. Ohayon, J. et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 295, H717–H727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoshino, T. et al. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am. J. Physiol. Heart Circ. Physiol. 297, H802–H810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richardson, P. D., Davies, M. J. & Born, G. V. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2, 941–944 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Wanjare, M., Agarwal, N. & Gerecht, S. Biomechanical strain induces elastin and collagen production in human pluripotent stem cell derived vascular smooth muscle cells. 309, C271–C281 (2015).

  32. Akyildiz, A. C., Speelman, L. & Gijsen, F. J. H. Mechanical properties of human atherosclerotic intima tissue. J. Biomech. 47, 773–783 (2014).

    Article  PubMed  Google Scholar 

  33. Holzapfel, G. A., Sommer, G., Gasser, C. T. & Regitnig, P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289, H2048–H2058 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Teng, Z. et al. Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study. Acta Biomater. 6, 00379–00371 (2014).

    Google Scholar 

  35. Walsh, M. T. et al. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J. Biomech. 47, 793–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Holzapfel, G. A., Mulvihill, J. J., Cunnane, E. M. & Walsh, M. T. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomech. 47, 859–869 (2014).

    Article  PubMed  Google Scholar 

  37. Yang, C. et al. In vivo IVUS-based 3D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans. Biomed. Eng. 56, 2420–2428 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang, Y. et al. The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses. J. Biomech. 47, 1465–1471 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cheruvu, P. K. et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J. Am. Coll. Cardiol. 50, 940–949 (2007).

    Article  PubMed  Google Scholar 

  40. Wykrzykowska, J. J. et al. Longitudinal distribution of plaque burden and necrotic core-rich plaques in nonculprit lesions of patients presenting with acute coronary syndromes. JACC Cardiovasc. Imaging 5, 006 (2012).

    Article  Google Scholar 

  41. Suo, J., Oshinski, J. N. & Giddens, D. P. Blood flow patterns in the proximal human coronary arteries: relationship to atherosclerotic plaque occurrence. Mol. Cell. Biomech. 5, 9–18 (2008).

    PubMed  Google Scholar 

  42. Caro, C. G., Fitz-Gerald, J. M. & Schroter, R. C. Arterial wall shear and distribution of early atheroma in man. Nature 223, 1159–1161 (1969).

    Article  CAS  PubMed  Google Scholar 

  43. White, S. J. et al. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J. Cell. Physiol. 226, 2841–2848 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng, C. et al. Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines. J. Clin. Invest. 117, 616–626 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, C. et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113, 2744–2753 (2006).

    Article  PubMed  Google Scholar 

  46. Nam, D. et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 297, H1535–H1543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, Y. C. et al. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Circ. Res. 113, 252–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Gijsen, F., van der Giessen, A., van der Steen, A. & Wentzel, J. Shear stress and advanced atherosclerosis in human coronary arteries. J. Biomech. 46, 240–247 (2013).

    Article  PubMed  Google Scholar 

  49. Davies, P. F., Civelek, M., Fang, Y. & Fleming, I. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 99, 315–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chaudhury, H. et al. c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis. Arterioscler. Thromb. Vasc. Biol. 30, 546–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Heo, K.-S. et al. PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. J. Cell Biol. 193, 867–884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Magid, R. & Davies, P. F. Endothelial protein kinase C isoform identity and differential activity of PKCζ in an athero-susceptible region of porcine aorta. Circ. Res. 97, 443–449 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Civelek, M., Manduchi, E., Riley, R. J., Stoeckert, C. J. Jr & Davies, P. F. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ. Res. 105, 453–461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, D.-Y. et al. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc. Natl Acad. Sci. USA 109, 1967–1972 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schober, A., Nazari-Jahantigh, M. & Weber, C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat. Rev. Cardiol. 12, 361–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Warboys, C. M. et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 34, 985–995 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    CAS  PubMed  Google Scholar 

  58. Chiu, J. J. et al. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-α in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 73–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Nagel, T., Resnick, N., Atkinson, W. J., Dewey, C. F. Jr & Gimbrone, M. A. Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 94, 885–891 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheikh, S., Rainger, G. E., Gale, Z., Rahman, M. & Nash, G. B. Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor-α: a basis for local variations in vascular sensitivity to inflammation. Blood 102, 2828–2834 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Matharu, N. M. et al. Inflammatory responses of endothelial cells experiencing reduction in flow after conditioning by shear stress. J. Cell. Physiol. 216, 732–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Chappell, D. C., Varner, S. E., Nerem, R. M., Medford, R. M. & Alexander, R. W. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ. Res. 82, 532–539 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Schmitt, M. M. N. et al. Endothelial junctional adhesion molecule-A guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation 129, 66–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Hajra, L., Zhu, S. N. & Cybulsky, M. I. Modulation of NF-kappa B signal transduction in different regions of the arterial tree. FASEB J. 15, A247–A247 (2001).

    Google Scholar 

  65. Cuhlmann, S. et al. Disturbeces RelA Expression via c-Jun N-terminal kinase 1: a novel mode of NF-κB regulation that promotes arterial inflammation. Circ. Res. 108, 950–959 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Bryan, M. T. et al. Mechanoresponsive networks controlling vascular inflammation. Arterioscler. Thromb. Vasc. Biol. 34, 2199–2205 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Ruland, J. Return to homeostasis: downregulation of NF-κB responses. Nat. Immunol. 12, 709–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Fang, Y., Shi, C., Manduchi, E., Civelek, M. & Davies, P. F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl Acad. Sci. USA 107, 13450–13455 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. SenBanerjee, S. et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199, 1305–1315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yurdagul, A. Jr et al. Altered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow. Mol. Biol. Cell 24, 398–408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Partridge, J. et al. Laminar shear stress acts as a switch to regulate divergent functions of NF-κB in endothelial cells. FASEB J. 21, 3553–3561 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Boon, R. A. et al. KLF2 suppresses TGF-β signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler. Thromb. Vasc. Biol. 27, 532–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Fledderus, J. O. et al. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 109, 4249–4257 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Boon, R. A. et al. KLF2-induced actin shear fibers control both alignment to flow and JNK signaling in vascular endothelium. Blood 115, 2533–2542 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Dai, G. et al. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ. Res. 101, 723–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Fledderus, J. O. et al. KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 1339–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Zakkar, M. et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler. Thromb. Vasc. Biol. 29, 1851–1857 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Zakkar, M. et al. Increased endothelial mitogen-activated protein kinase phosphatase-1 expression suppresses proinflammatory activation at sites that are resistant to atherosclerosis. Circ. Res. 103, 726–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Castier, Y., Brandes, R. P., Leseche, G., Tedgui, A. & Lehoux, S. p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ. Res. 97, 533–540 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, J. C., Normand, S.-L. T., Mauri, L. & Kuntz, R. E. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation 110, 278–284 (2004).

    Article  PubMed  Google Scholar 

  82. McDaniel, M. C. et al. Localization of culprit lesions in coronary arteries of patients with ST-segment elevation myocardial infarctions: relation to bifurcations and curvatures. Am. Heart J. 161, 508–515 (2011).

    Article  PubMed  Google Scholar 

  83. Phinikaridou, A., Hua, N., Pham, T. & Hamilton, J. A. Regions of low endothelial shear stress colocalize with positive vascular remodeling and atherosclerotic plaque disruption: an in vivo magnetic resonance imaging study. Circ. Cardiovasc. Imaging 6, 302–310 (2013).

    Article  PubMed  Google Scholar 

  84. Koskinas, K. C. et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation 121, 2092–2101 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chatzizisis, Y. S. et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49, 2379–2393 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Krams, R. et al. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo: combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17, 2061–2065 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Stone, P. H. et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108, 438–444 (2003).

    Article  PubMed  Google Scholar 

  88. Stone, P. H. et al. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur. Heart J. 28, 705–710 (2007).

    Article  PubMed  Google Scholar 

  89. Papafaklis, M. I. et al. Effect of the local hemodynamic environment on the de novo development and progression of eccentric coronary atherosclerosis in humans: insights from PREDICTION. Atherosclerosis 240, 205–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Samady, H. et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124, 779–788 (2011).

    CAS  PubMed  Google Scholar 

  91. Corban, M. T. et al. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis 232, 271–276 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Stone, P. H. et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126, 172–181 (2012).

    Article  PubMed  Google Scholar 

  93. Maurovich-Horvat, P., Ferencik, M., Voros, S., Merkely, B. & Hoffmann, U. Comprehensive plaque assessment by coronary CT angiography. Nat. Rev. Cardiol. 11, 390–402 (2014).

    Article  PubMed  Google Scholar 

  94. Hetterich, H. et al. Coronary computed tomography angiography based assessment of endothelial shear stress and its association with atherosclerotic plaque distribution in-vivo. PLoS ONE 10, e0115408 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Burke, A. P. et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336, 1276–1282 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Davies, M. J. & Thomas, A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N. Engl. J. Med. 310, 1137–1140 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Fujii, K. et al. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc. Imaging 3, 168–175 (2010).

    Article  PubMed  Google Scholar 

  99. Zhao, Z. et al. Dynamic nature of nonculprit coronary artery lesion morphology in STEMI: a serial IVUS analysis from the HORIZONS-AMI trial. JACC Cardiovasc. Imaging 6, 86–95 (2013).

    Article  PubMed  Google Scholar 

  100. Chatzizisis, Y. S. et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117, 993–1002 (2008).

    Article  PubMed  Google Scholar 

  101. Traub, O. & Berk, B. C. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 677–685 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87, 320–330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mehta, J. L., Chen, J., Hermonat, P. L., Romeo, F. & Novelli, G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc. Res. 69, 36–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Murase, T. et al. Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells. Circ. Res. 83, 328–333 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Koskinas, K. C. et al. Synergistic effect of local endothelial shear stress and systemic hypercholesterolemia on coronary atherosclerotic plaque progression and composition in pigs. Int. J. Cardiol. 169, 394–401 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhou, J. et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ. Res. 113, 40–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Qi, Y. X. et al. Rho–GDP dissociation inhibitor alpha downregulated by low shear stress promotes vascular smooth muscle cell migration and apoptosis: a proteomic analysis. Cardiovasc. Res. 80, 114–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Koskinas, K. C. et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler. Thromb. Vasc. Biol. 33, 1494–1504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chatzizisis, Y. S. et al. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 123, 621–630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Newby, A. C. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol. 28, 2108–2114 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Pedrigi, R. M. et al. Inducing persistent flow disturbances accelerates atherogenesis and promotes thin cap fibroatheroma development in D374Y-PCSK9 hypercholesterolemic minipigs. Circulation 132, 1003–1012 (2015).

    Article  PubMed  Google Scholar 

  112. Obaid, D. R. et al. Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. Circ. Cardiovasc. Imaging 6, 655–664 (2013).

    Article  PubMed  Google Scholar 

  113. Voros, S. et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc. Imaging 4, 537–548 (2011).

    Article  PubMed  Google Scholar 

  114. Pundziute, G. et al. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc. Interv. 1, 176–182 (2008).

    Article  PubMed  Google Scholar 

  115. Nair, A., Margolis, M. P., Kuban, B. D. & Vince, D. G. Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. EuroIntervention 3, 113–120 (2007).

    PubMed  Google Scholar 

  116. Yabushita, H. et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 106, 1640–1645 (2002).

    Article  PubMed  Google Scholar 

  117. Eshtehardi, P. et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J. Am. Heart Assoc. 1, e002543 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wentzel, J. J. et al. In vivo assessment of the relationship between shear stress and necrotic core in early and advanced coronary artery disease. EuroIntervention 9, 989–995 (2013).

    Article  PubMed  Google Scholar 

  119. Rodriguez-Granillo, G. A. et al. Plaque composition and its relationship with acknowledged shear stress patterns in coronary arteries. J. Am. Coll. Cardiol. 47, 884–885 (2006).

    Article  PubMed  Google Scholar 

  120. Vergallo, R. et al. Endothelial shear stress and coronary plaque characteristics in humans: a combined frequency-domain optical coherence tomography and computational fluid dynamics study. Circ. Cardiovasc. Imaging 7, 905–911 (2014).

    Article  PubMed  Google Scholar 

  121. Falk, E. Why do plaques rupture? Circulation 86 (Suppl. 6), III30–III42 (1992).

    CAS  PubMed  Google Scholar 

  122. Burke, A. P. et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103, 934–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Loree, H. M., Kamm, R. D., Stringfellow, R. G. & Lee, R. T. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71, 850–858 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Teng, Z. et al. Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo MRI-based 2D finite-element study. Ann. Biomed. Eng. 38, 3096–3101 (2010).

    Article  PubMed  Google Scholar 

  125. Tang, D., Yang, C., Kobayashi, S. & Ku, D. N. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3D fluid-structure interactions (FSI) models. J. Biomech. Eng. 126, 363–370 (2004).

    Article  PubMed  Google Scholar 

  126. Gao, H. & Long, Q. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. J. Biomech. 41, 3053–3059 (2008).

    Article  PubMed  Google Scholar 

  127. Finet, G., Ohayon, J. & Rioufol, G. Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron. Artery Dis. 15, 13–20 (2004).

    Article  PubMed  Google Scholar 

  128. Li, Z. Y. et al. Does calcium deposition play a role in the stability of atheroma? Location may be the key. Cerebrovasc. Dis. 24, 452–459 (2007).

    Article  PubMed  Google Scholar 

  129. Bluestein, D. et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41, 1111–1118 (2008).

    Article  PubMed  Google Scholar 

  130. Imoto, K. et al. Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging. J. Am. Coll. Cardiol. 46, 1507–1515 (2005).

    Article  PubMed  Google Scholar 

  131. Vengrenyuk, Y. et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl Acad. Sci. USA 103, 14678–14683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kelly-Arnold, A. et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl Acad. Sci. USA 110, 10741–10746 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Irkle, A. et al. Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography. Nat. Commun. 6, 7495 (2015).

    Article  PubMed  Google Scholar 

  134. Tarkin, J. M., Joshi, F. R. & Rudd, J. H. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Joshi, N. V. et al. F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705–703 (2014).

    Article  PubMed  Google Scholar 

  136. Cheng, G. C., Loree, H. M., Kamm, R. D., Fishbein, M. C. & Lee, R. T. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87, 1179–1187 (1993).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, R. T. et al. Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque fracture locations. J. Am. Coll. Cardiol. 21, 777–782 (1993).

    Article  CAS  PubMed  Google Scholar 

  138. Huang, H. et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103, 1051–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Lee, R. T., Schoen, F. J., Loree, H. M., Lark, M. W. & Libby, P. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis: implications for plaque rupture. Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Hallow, K. M., Taylor, W. R., Rachev, A. & Vito, R. P. Markers of inflammation collocate with increased wall stress in human coronary arterial plaque. Biomech. Model. Mechanobiol. 8, 473–486 (2009).

    Article  PubMed  Google Scholar 

  141. Qiu, J. et al. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J. R. Soc. Interface 11, 20130852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rodriguez, A. I. et al. MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 35, 430–438 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Cattaruzza, M., Dimigen, C., Ehrenreich, H. & Hecker, M. Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J. 14, 991–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Teng, Z. et al. Critical mechanical conditions around neovessels in carotid atherosclerotic plaque may promote intraplaque hemorrhage. Atherosclerosis 223, 321–326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tang, D. et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng. 32, 947–960 (2004).

    Article  PubMed  Google Scholar 

  146. Li, Z. Y. et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39, 2611–2622 (2006).

    Article  PubMed  Google Scholar 

  147. Li, Z. Y. et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J. Vasc. Surg. 45, 768–775 (2007).

    Article  PubMed  Google Scholar 

  148. Sadat, U. et al. Association between biomechanical structural stresses of atherosclerotic carotid plaques and subsequent ischaemic cerebrovascular events — a longitudinal in vivo magnetic resonance imaging-based finite element study. Eur. J. Vasc. Endovasc. Surg. 40, 485–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Ohayon, J., Teppaz, P., Finet, G. & Rioufol, G. In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method. Coron. Artery Dis. 12, 655–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Dirksen, M. T., van der Wal, A. C., van den Berg, F. M., van der Loos, C. M. & Becker, A. E. Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98, 2000–2003 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Wentzel, J. J. et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc. Res. 96, 234–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Waxman, S., Ishibashi, F. & Muller, J. E. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation 114, 2390–2411 (2006).

    Article  PubMed  Google Scholar 

  153. Sameshima, N. et al. The values of wall shear stress, turbulence kinetic energy and blood pressure gradient are associated with atherosclerotic plaque erosion in rabbits. J. Atheroscler. Thromb. 21, 831–838 (2014).

    Article  PubMed  Google Scholar 

  154. Maalej, N., Holden, J. & Folts, J. Effect of shear stress on acute platelet thrombus formation in canine stenosed carotid arteries: an in vivo quantitative study. J. Thromb. Thrombolysis 5, 231–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Bark, D. L. Jr, Para, A. N. & Ku, D. N. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109, 2642–2650 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Farb, A. et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 93, 1354–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Arbustini, E. et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82, 269–272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Virmani, R., Burke, A. P. & Farb, A. Plaque rupture and plaque erosion. Thromb. Haemost. 1, 1–3 (1999).

    Google Scholar 

  159. Fukumoto, Y. et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J. Am. Coll. Cardiol. 51, 645–650 (2008).

    Article  PubMed  Google Scholar 

  160. Gijsen, F. J. et al. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol. 295, H1608–H1614 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Bank, A. J., Versluis, A., Dodge, S. M. & Douglas, W. H. Atherosclerotic plaque rupture: a fatigue process? Med. Hypotheses 55, 480–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Versluis, A., Bank, A. J. & Douglas, W. H. Fatigue and plaque rupture in myocardial infarction. J. Biomech. 39, 339–347 (2006).

    Article  PubMed  Google Scholar 

  163. Huang, Y. et al. In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture. Biomed. Eng. Online 12, 36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Pei, X., Wu, B., Tang, T. Y., Gillard, J. H. & Li, Z.-Y. Fatigue crack growth under pulsatile pressure and plaque rupture. JACC Cardiovasc. Imaging 7, 738–740 (2014).

    Article  PubMed  Google Scholar 

  165. Motoyama, S. et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol. 50, 319–326 (2007).

    Article  PubMed  Google Scholar 

  166. Motoyama, S. et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J. Am. Coll. Cardiol. 66, 337–346 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the British Heart Foundation (FS/13/33/30168), Heart Research UK (RG2638/14/16), the Cambridge NIHR Biomedical Research Centre, and the BHF Cambridge Centre for Research Excellence. The authors would also like to thank Shuo Wang (Department of Radiology, University of Cambridge, UK) for the preparation of the images for publication.

Author information

Authors and Affiliations

Authors

Contributions

A.J.B., Z.T., and P.C. researched data for the article, and wrote and edited the manuscript. J.H.G., H.S., and M.R.B. discussed the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Adam J. Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, A., Teng, Z., Evans, P. et al. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol 13, 210–220 (2016). https://doi.org/10.1038/nrcardio.2015.203

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing