Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic decision-making for patients with fluctuating mitral regurgitation

Key Points

  • Mitral regurgitation (MR) often varies dynamically with changes in loading conditions

  • Dynamic fluctuation of MR can precipitate symptoms and induce left ventricular remodelling, and might have prognostic value

  • An intermittent increase in MR is often accompanied by dynamic pulmonary hypertension

  • The optimal treatment strategy for fluctuating MR is uncertain, but can include a combination of surgery, cardiac resynchronization therapy, and new mitral valve approaches

Abstract

Mitral regurgitation (MR) is a common, progressive, and difficult-to-manage disease. MR is dynamic in nature, with physiological fluctuations occurring in response to various stimuli such as exercise and ischaemia, which can precipitate the development of symptoms and subsequent cardiac events. In both chronic primary and secondary MR, the dynamic behaviour of MR can be reliably examined during stress echocardiography. Dynamic fluctuation of MR can also have prognostic value; patients with a marked increase in regurgitant volume or who exhibit increased systolic pulmonary artery pressure during exercise have lower symptom-free survival than those who do not experience significant changes in MR and systolic pulmonary artery pressure during exercise. Identifying patients who have dynamic MR, and understanding the mechanisms underlying the condition, can potentially influence revascularization strategies (such as the surgical restoration of coronary blood flow) and interventional treatment (including cardiac resynchronization therapy and new approaches targeted to the mitral valve).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transthoracic Doppler echocardiogram of a patient with symptomatic ischaemic cardiomyopathy, severe left ventricular dysfunction, and moderate secondary mitral regurgitation at rest.
Figure 2: Transthoracic Doppler echocardiogram showing a substantial decrease in secondary mitral regurgitation severity observed after dobutamine administration.
Figure 3: Transoesophageal Doppler echocardiogram in a patient with a clinical history of flash pulmonary oedmea and fluctuating mitral regurgitation.
Figure 4: Management of patients with moderate secondary MR and left ventricular dysfunction.

Similar content being viewed by others

References

  1. Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC). Guidelines on the management of valvular heart disease (version 2012). Eur. Heart J. 33, 2451–2496 (2012).

  2. Nishimura, R. A. et al. 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2438–2488 (2014).

    Article  Google Scholar 

  3. Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14, 611–644 (2013).

    Article  Google Scholar 

  4. Lancellotti, P., Zamorano, J. L. & Vannan, M. A. Imaging challenges in secondary mitral regurgitation: unsolved issues and perspectives. Circ. Cardiovasc. Imaging. 7, 735–746 (2014).

    Article  Google Scholar 

  5. Lebrun, F., Lancellotti, P. & Piérard, L. A. Quantitation of functional mitral regurgitation during bicycle exercise in patients with heart failure. J. Am. Coll. Cardiol. 38, 1685–1692 (2001).

    Article  CAS  Google Scholar 

  6. Piérard, L. A. & Lancellotti, P. Stress testing in valve disease. Heart 93, 766–772 (2007).

    Article  Google Scholar 

  7. Lancellotti, P., Gerard, P. L. & Piérard, L. A. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur. Heart J. 26, 1528–1532 (2005).

    Article  Google Scholar 

  8. Magne, J., Lancellotti, P. & Piérard, L. A. Exercise-induced changes in degenerative mitral regurgitation. J. Am. Coll. Cardiol. 56, 300–309 (2010).

    Article  Google Scholar 

  9. Lancellotti, P. et al. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking. J. Am. Soc. Echocardiogr. 21, 1331–1336 (2008).

    Article  Google Scholar 

  10. Magne, J., Lancellotti, P. & Piérard, L. A. Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation 122, 33–41 (2010).

    Article  Google Scholar 

  11. Lancellotti, P., Troisfontaines, P., Toussaint, A. C. & Piérard, L. A. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation 108, 1713–1717 (2013).

    Article  Google Scholar 

  12. Magne, J. et al. Left ventricular contractile reserve in asymptomatic primary mitral regurgitation. Eur. Heart J. 35, 1608–1616 (2014).

    Article  CAS  Google Scholar 

  13. Perez de Isla, L. et al. Prognostic significance of functional mitral regurgitation after a first non-ST-segment elevation acute coronary syndrome. Eur. Heart J. 27, 2655–2660 (2006).

    Article  Google Scholar 

  14. Levine, R. A. & Schwammenthal, E. Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation 112, 745–758 (2005).

    Article  Google Scholar 

  15. Bursi, F. et al. Heart failure and death after myocardial infarction in the community: the emerging role of mitral regurgitation. Circulation 111, 295–301 (2005).

    Article  Google Scholar 

  16. Piérard, L. A. & Lancellotti, P. The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N. Engl. J. Med. 351, 1627–1634 (2004).

    Article  Google Scholar 

  17. Tenenbaum, A. et al. Improved posterobasal segment function after thrombolysis is associated with decreased incidence of significant mitral regurgitation in a first inferior myocardial infarction. J. Am. Coll. Cardiol. 25, 1558–1563 (1995).

    Article  CAS  Google Scholar 

  18. Picard, M. H. et al. Echocardiographic predictors of survival and response to early revascularization in cardiogenic shock. Circulation 107, 279–284 (2003).

    Article  Google Scholar 

  19. Yared, K., Lam, K. M. & Hung, J. The use of exercise echocardiography in the evaluation of mitral regurgitation. Curr. Cardiol. Rev. 5, 312–322 (2009).

    Article  Google Scholar 

  20. Fattouch, K. et al. Mitral valve annuloplasty and papillary muscle relocation oriented by 3-dimensional transesophageal echocardiography for severe functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 143 (Suppl. 4), S38–S42 (2012).

    Article  Google Scholar 

  21. Fattouch, K. et al. Papillary muscle relocation in conjunction with valve annuloplasty improve repair results in severe ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 143, 1352–1355 (2012).

    Article  Google Scholar 

  22. Marwick, T. H., Lancellotti, P. & Piérard, L. Ischaemic mitral regurgitation: mechanisms and diagnosis. Heart 95, 1711–1718 (2009).

    Article  Google Scholar 

  23. Grigioni, F. et al. Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J. Am. Coll. Cardiol. 45, 260–267 (2005).

    Article  Google Scholar 

  24. Fattouch, K., Punjabi, P. & Lancellotti, P. Definition of moderate ischaemic mitral regurgitation: it's time to speak the same language. Perfusion 28, 173–175 (2013).

    Article  CAS  Google Scholar 

  25. Bhattacharyya, S., Khattar, R., Chahal, N. & Senior, R. Dynamic mitral regurgitation: review of evidence base, assessment & implications for clinical management. Cardiol. Rev. http://dx.doi.org/10.1097/CRD.0000000000000037.

  26. Lancellotti, P. & Magne, J. Stress echocardiography in regurgitant valve disease. Circ. Cardiovasc. Imaging 6, 840–849 (2013).

    Article  Google Scholar 

  27. Lancellotti, P., Lebrun, F. & Piérard, L. A. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J. Am. Coll. Cardiol. 42, 1921–1928 (2003).

    Article  Google Scholar 

  28. Tumminello, G., Lancellotti, P., Lempereur, M., D'Orio, V. & Pierard, L. A. Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur. Heart J. 28, 569–574 (2007).

    Article  Google Scholar 

  29. Rosario, L. B., Stevenson, L. W., Solomon, S. D., Lee, R. T. & Reimold, S. C. The mechanism of decrease in dynamic mitral regurgitation during heart failure treatment: importance of reduction in the regurgitant orifice size. J. Am. Coll. Cardiol. 32, 1819–1824 (1998).

    Article  CAS  Google Scholar 

  30. Aklog, L. et al. Does coronary artery bypass grafting alone correct moderate ischemic mitral regurgitation? Circulation 104, 68–75 (2001).

    Article  Google Scholar 

  31. Keren, G., Laniado, S., Sonnenblick, E. H. & Lejemtel, T. Dynamics of functional mitral regurgitation during dobutamine therapy in patients with severe congestive heart failure: a Doppler echocardiographic study. Am. Heart J. 118, 748–754 (1989).

    Article  CAS  Google Scholar 

  32. Lancellotti, P., Marwick, T. & Pierard, L. A. How to manage ischaemic mitral regurgitation. Heart 94, 1497–1502 (2008).

    Article  Google Scholar 

  33. Gisbert, A. et al. Dynamic quantitative echocardiographic evaluation of mitral regurgitation in the operating department. J. Am. Soc. Echocardiogr. 19, 140–146 (2006).

    Article  Google Scholar 

  34. Tischler, M. D., Battle, R. W., Saha, M., Niggel, J. & Le Winter, M. Observations suggesting a high incidence of exercise-induced severe mitral regurgitation in patients with mild rheumatic mitral valve disease at rest. J. Am. Coll. Cardiol. 25, 128–133 (1994).

    Article  Google Scholar 

  35. Kusunose, K., Popovic´, Z. B., Motoki, H. & Marwick, T. H. Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ. Cardiovasc. Imaging 6, 167–176 (2013).

    Article  Google Scholar 

  36. LaPar, D. J. et al. Mitral valve repair rates correlate with surgeon and institutional experience. J. Thorac. Cardiovasc. Surg. 148, 995–1004 (2014).

    Article  Google Scholar 

  37. Fattouch, K. et al. Efficacy of adding mitral valve restrictive annuloplasty to coronary artery bypass grafting in patients with moderate ischemic mitral valve regurgitation: a randomized trial. J. Thorac. Cardiovasc. Surg. 138, 278–285 (2009).

    Article  Google Scholar 

  38. Chan, K. M. J. et al. Coronary artery bypass surgery with or without mitral valve annuloplasty in moderate functional ischemic mitral regurgitation. Final results of the Randomized Ischemic Mitral Evaluation (RIME) Trial. Circulation 126, 2502–2510 (2012).

    Article  Google Scholar 

  39. Kang, D. H. et al. Mitral valve repair versus revascularization alone in the treatment of ischaemic mitral regurgitation. Circulation 114 (Suppl.), I499–I503 (2006).

    PubMed  Google Scholar 

  40. Lee, A. P. et al. Mechanisms of recurrent functional mitral regurgitation after mitral valve repair in nonischemic dilated cardiomyopathy: importance of distal anterior leaflet tethering. Circulation 119, 2606–2614 (2009).

    Article  Google Scholar 

  41. Braun, J. et al. Restrictive mitral annuloplasty cures ischemic mitral regurgitation and heart failure. Ann. Thorac. Surg. 85, 430–436 (2008).

    Article  Google Scholar 

  42. Gelsomino, S. et al. Five year echocardiographic results of combined undersized mitral ring annuloplasty and CABG for chronic ischaemic MR. Eur. Heart J. 29, 231–240 (2008).

    Article  Google Scholar 

  43. Bolling, S. F., Pagani, F. D., Deeb, G. M. & Bach, D. S. Intermediate-term outcome of mitral reconstruction in cardiomyopathy. J. Thorac. Cardiovasc. Surg. 115, 381–386 (1998).

    Article  CAS  Google Scholar 

  44. Magne, J. et al. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation 115, 782–791 (2007).

    Article  Google Scholar 

  45. Hung, J. et al. Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued LV remodeling as a moving target. Circulation 110 (Suppl.), II85–II90 (2004).

    Google Scholar 

  46. Timek, T. A. et al. Annular versus subvalvular approaches to acute ischemic mitral regurgitation. Circulation 106 (Suppl. 1), I27–I32 (2002).

    PubMed  Google Scholar 

  47. De Bonis, M. et al. Very long-term durability of the edge-to-edge repair for isolated anterior mitral leaflet prolapse: up to 21 years of clinical and echocardiographic results. J Thorac. Cardiovasc. Surg. 148, 2027–2032 (2014).

    Article  Google Scholar 

  48. Acker, M. A. et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N. Engl. J. Med. 370, 23–32 (2014).

    Article  CAS  Google Scholar 

  49. Lorusso, R. et al. Mitral valve repair or replacement for ischemic mitral regurgitation? The Italian Study on the Treatment of Ischemic Mitral Regurgitation (ISTIMIR). J. Thorac. Cardiovasc. Surg. 145, 128–139 (2013).

    Article  Google Scholar 

  50. Sutton, M. G. et al. Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE). Circulation 113, 266–272 (2006).

    Article  Google Scholar 

  51. Yu, C. M. & Hayes, D. L. Cardiac resynchronization therapy: state of the art 2013. Eur. Heart J. 34, 1396–1403 (2013).

    Article  CAS  Google Scholar 

  52. Ypenburg, C. et al. Mechanism of improvement in mitral regurgitation after cardiac resynchronization therapy. Eur. Heart J. 29, 757–765 (2008).

    Article  Google Scholar 

  53. Ypenburg, C. et al. Acute effects of initiation and withdrawal of cardiac resynchronization therapy on papillary muscle dyssynchrony and mitral regurgitation. J. Am. Coll. Cardiol. 50, 2071–2077 (2007).

    Article  Google Scholar 

  54. Kanzaki, H. et al. A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy. J. Am. Coll. Cardiol. 44, 1619–1625 (2004).

    Article  Google Scholar 

  55. Madaric, J. et al. Early and late effects of cardiac resynchronization therapy on exercise-induced mitral regurgitation: relationship with left ventricular dyssynchrony, remodelling and cardiopulmonary performance. Eur. Heart J. 28, 2134–2141 (2007).

    Article  Google Scholar 

  56. Sénéchal, M. et al. Impact of mitral regurgitation and myocardial viability on left ventricular reverse remodeling after cardiac resynchronization therapy in patients with ischemic cardiomyopathy. Am. J. Cardiol. 106, 31–37 (2010).

    Article  Google Scholar 

  57. Lancellotti, P., Stainier, P. Y., Lebois, F. & Piérard, L. A. Effect of dynamic left ventricular dyssynchrony on dynamic mitral regurgitation in patients with heart failure due to coronary artery disease. Am. J. Cardiol. 96, 1304–1307 (2005).

    Article  Google Scholar 

  58. Izumo, M. et al. Changes in mitral regurgitation and left ventricular geometry during exercise affect exercise capacity in patients with systolic heart failure. Eur. J. Echocardiogr. 12, 54–60 (2011).

    Article  Google Scholar 

  59. Moonen, M., O'Connor, K., Magne, J., Lancellotti, P. & Pierard, L. A. Stress echocardiography for selecting potential responders to cardiac resynchronisation therapy. Heart 96, 1142–1146 (2010).

    Article  Google Scholar 

  60. Feldman, T. & Young, A. Percutaneous approaches to valve repair for mitral regurgitation. J. Am. Coll. Cardiol. 63, 2057–2068 (2004).

    Article  Google Scholar 

  61. Zamorano, J. L. et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur. Heart J. 32, 2189–2214 (2011).

    Article  Google Scholar 

  62. Feldman, T. et al. Percutaneous Mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge Repair Study) cohort. J. Am. Coll. Cardiol. 54, 686–694 (2009).

    Article  Google Scholar 

  63. Feldman, T. et al. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 364, 1395–1406 (2011).

    Article  CAS  Google Scholar 

  64. Maisano, F., La Canna, G., Colombo, A. & Alfieri, O. The evolution from surgery to percutaneous mitral valve interventions: the role of the edge to edge technique. J. Am. Coll. Cardiol. 58, 2174–2182 (2011).

    Article  Google Scholar 

  65. Auricchio A. et al. Correction of mitral regurgitation in non-responders to cardiac resynchronization therapy by MitraClip improves symptoms and promotes reverse remodeling. J. Am. Coll. Cardiol. 58, 2183–2189 (2011).

    Article  Google Scholar 

  66. Fedak, P. W., McCarthy, P. M. & Bonow, R. O. Evolving concepts and technologies in mitral valve repair. Circulation 117, 963–974 (2008).

    Article  Google Scholar 

  67. Schofer, J. et al. Percutaneous mitral annuloplasty for functional mitral regurgitation: results of the CARILLON Mitral Annuloplasty Device European Union Study. Circulation 120, 326–333 (2009).

    Article  Google Scholar 

  68. Sack, S. et al. Percutaneous transvenous mitral annuloplasty: initial human experience with a novel coronary sinus implant device. Circ. Cardiovasc. Interv. 2, 277–284 (2009).

    Article  Google Scholar 

  69. Siminiak, T. et al. Treatment of functional mitral regurgitation by percutaneous annuloplasty: results of the TITAN Trial. Eur. J. Heart Fail. 14, 931–938 (2012).

    Article  Google Scholar 

  70. Sponga, S. et al. Reversible circumflex coronary artery occlusion during percutaneous transvenous mitral annuloplasty with the Viacor system. J. Am. Coll. Cardiol. 59, 288 (2012).

    Article  Google Scholar 

  71. Raman, J., Jagannathan, R., Chandrashekar, P. & Sugeng, L. Can we repair the mitral valve from outside the heart? A novel extra-cardiac approach to functional mitral regurgitation. Heart Lung Circ. 20, 157–162 (2011).

    Article  Google Scholar 

  72. Grossi, E. A. et al. Comparison of Coapsys annuloplasty and internal reduction mitral annuloplasty in the randomized treatment of functional ischemic mitral regurgitation: impact on the left ventricle. J. Thorac. Cardiovasc. Surg. 131, 1095–1098 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Patrizio Lancellotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lancellotti, P., Fattouch, K. & La Canna, G. Therapeutic decision-making for patients with fluctuating mitral regurgitation. Nat Rev Cardiol 12, 212–219 (2015). https://doi.org/10.1038/nrcardio.2015.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing