Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell therapy for cardiac repair—lessons from clinical trials

Key Points

  • First-generation stem cells are comprised of unselected cell mixtures exemplified by unfractionated bone-marrow-derived mononuclear stem cells

  • Initial stem-cell trials have established safety and feasibility, but show limited efficacy in the context of cardiovascular disease

  • The main hurdles to achieving benefit from stem-cell therapy include poorly defined cell populations, quality control in cell processing, and limited efficiency in cell delivery

  • To improve the regenerative effect, investigators have focused on purified cell populations to eliminate nonregenerative cells

  • Next-generation cell therapy ushers a new era in regenerative medicine by targeting organ or disease before implantation

  • The interplay between the diseased heart and regenerative biotherapeutics is critical in achieving repair

Abstract

The global impetus to identify curative therapies has been fuelled by the unmet needs of patients in the context of a growing heart failure pandemic. To date, regeneration trials in patients with cardiovascular disease have used stem-cell-based therapy in the period immediately after myocardial injury, in an attempt to halt progression towards ischaemic cardiomyopathy, or in the setting of congestive heart failure, to target the disease process and prevent organ decompensation. Worldwide, several thousand patients have now been treated using autologous cell-based therapy; the safety and feasibility of this approach has been established, pitfalls have been identified, and optimization procedures envisioned. Furthermore, the initiation of phase III trials to further validate the therapeutic value of cell-based regenerative medicine and address the barriers to successful clinical implementation has led to resurgence in the enthusiasm for such treatments among patients and health-care providers. In particular, poor definition of cell types used, diversity in cell-handling procedures, and functional variability intrinsic to autologously-derived cells have been identified as the main factors limiting adoption of cell-based therapies. In this Review, we summarize the experience obtained from trials of 'first-generation' cell-based therapy, and emphasize the advances in the purification and lineage specification of stem cells that have enabled the development of 'next-generation' stem-cell-based therapies targeting cardiovascular disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mechanistic basis for regeneration, and the fate of progenitors after transplantation into the myocardium.
Figure 2: Approaches to isolation and preparation of stem cells for regenerative cardiovascular medicine.

References

  1. 1

    Oskouei, B. N. et al. Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair. Stem Cells Transl. Med. 1, 116–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Clifford, D. M. et al. Stem cell treatment for acute myocardial infarction. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD006536. http://dx.doi.org/10.1002/14651858.CD006536.pub3 (2012).

  3. 3

    Ezekowitz, J. A. et al. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J. Am. Coll. Cardiol. 53, 13–20 (2009).

    Article  PubMed  Google Scholar 

  4. 4

    Go, A. S. et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013).

    PubMed  Google Scholar 

  5. 5

    Rohde, L. E., Bertoldi, E. G., Goldraich, L. & Polanczyk, C. A. Cost-effectiveness of heart failure therapies. Nat. Rev. Cardiol. 10, 338–354 (2013).

    Article  PubMed  Google Scholar 

  6. 6

    Heidenreich, P. A. et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933–944 (2011).

    Article  PubMed  Google Scholar 

  7. 7

    Braunschweig, F., Cowie, M. R. & Auricchio, A. What are the costs of heart failure? Europace 13 (Suppl. 2), ii13–ii17 (2011).

    PubMed  Google Scholar 

  8. 8

    Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N. Engl. J. Med. 325, 293–302 (1991).

  9. 9

    Bristow, M. R., Feldman, A. M. & Saxon, L. A. Heart failure management using implantable devices for ventricular resynchronization: Comparison of Medical Therapy, Pacing, and Defibrillation in Chronic Heart Failure (COMPANION) trial. COMPANION Steering Committee and COMPANION Clinical Investigators. J. Card. Fail. 6, 276–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Domanski, M. J. et al. A comparative analysis of the results from 4 trials of beta-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS. J. Card. Fail. 9, 354–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Gheorghiade, M. & Pitt, B. Digitalis Investigation Group (DIG) trial: a stimulus for further research. Am. Heart J. 134, 3–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Rose, E. A. et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345, 1435–1443 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Gerczuk, P. Z. & Kloner, R. A. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J. Am. Coll. Cardiol. 59, 969–978 (2012).

    Article  PubMed  Google Scholar 

  15. 15

    Assmus, B. et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    Article  PubMed  Google Scholar 

  16. 16

    Janssens, S. et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113–121 (2006).

    Article  PubMed  Google Scholar 

  17. 17

    Tendera, M. et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) trial. Eur. Heart J. 30, 1313–1321 (2009).

    Article  PubMed  Google Scholar 

  18. 18

    Schachinger, V. et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 355, 1210–1221 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Wollert, K. C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141–148 (2004).

    Article  PubMed  Google Scholar 

  20. 20

    Wollert, K. C. & Drexler, H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat. Rev. Cardiol. 7, 204–215 (2010).

    Article  PubMed  Google Scholar 

  21. 21

    Perin, E. C. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294–2302 (2003).

    Article  PubMed  Google Scholar 

  22. 22

    Rehman, J. Bone marrow tinctures for cardiovascular disease: lost in translation. Circulation 127, 1935–1937 (2013).

    Article  PubMed  Google Scholar 

  23. 23

    Strauer, B. E. & Steinhoff, G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J. Am. Coll. Cardiol. 58, 1095–1104 (2011).

    Article  PubMed  Google Scholar 

  24. 24

    Traverse, J. H. et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308, 2380–2389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Perin, E. C. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307, 1717–1726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Traverse, J. H. et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306, 2110–2119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Fish, K. M. et al. AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling. Circ. Heart Fail. 6, 310–317 (2013).

    Article  PubMed  Google Scholar 

  28. 28

    Penn, M. S. & Mangi, A. A. Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ. Res. 102, 1471–1482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Atala, A. Engineering organs. Curr. Opin. Biotechnol. 20, 575–592 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Badylak, S. F., Weiss, D. J., Caplan, A. & Macchiarini, P. Engineered whole organs and complex tissues. Lancet 379, 943–952 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Behfar, A. et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J. Am. Coll. Cardiol. 56, 721–734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Dietz, A. B., Padley, D. J. & Gastineau, D. A. Infrastructure development for human cell therapy translation. Clin. Pharmacol. Ther. 82, 320–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Deb, A. et al. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247–1249 (2003).

    Article  PubMed  Google Scholar 

  35. 35

    Jackson, K. A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Meyer, G. P. et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113, 1287–1294 (2006).

    Article  PubMed  Google Scholar 

  37. 37

    Strauer, B. E. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913–1918 (2002).

    Article  PubMed  Google Scholar 

  38. 38

    Fernandez-Aviles, F. et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ. Res. 95, 742–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Meyer, G. P. et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J. 30, 2978–2984 (2009).

    Article  PubMed  Google Scholar 

  40. 40

    Assmus, B. et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ. Heart Fail. 3, 89–96 (2010).

    Article  PubMed  Google Scholar 

  41. 41

    Huikuri, H. V. et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur. Heart J. 29, 2723–2732 (2008).

    Article  PubMed  Google Scholar 

  42. 42

    Lunde, K. et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355, 1199–1209 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Hirsch, A. et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: rationale and design of the HEBE trial—a prospective, multicenter, randomized trial. Am. Heart J. 152, 434–441 (2006).

    Article  PubMed  Google Scholar 

  44. 44

    Hirsch, A. et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur. Heart J. 32, 1736–1747 (2011).

    Article  PubMed  Google Scholar 

  45. 45

    Janssens, S. P. Cardiac bone marrow cell therapy: the proof of the pudding remains in the eating. Eur. Heart J. 32, 1697–1700 (2011).

    Article  PubMed  Google Scholar 

  46. 46

    Surder, D. et al. Cell-based therapy for myocardial repair in patients with acute myocardial infarction: rationale and study design of the SWiss multicenter Intracoronary Stem cells Study in Acute Myocardial Infarction (SWISS-AMI). Am. Heart J. 160, 58–64 (2010).

    Article  PubMed  Google Scholar 

  47. 47

    Menasche, P. et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 41, 1078–1083 (2003).

    Article  PubMed  Google Scholar 

  48. 48

    Menasche, P. et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117, 1189–1200 (2008).

    Article  PubMed  Google Scholar 

  49. 49

    Assmus, B. et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 355, 1222–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Assmus, B. et al. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ. Res. 100, 1234–1241 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Dimmeler, S., Burchfield, J. & Zeiher, A. M. Cell-based therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 28, 208–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Huang, X. P. et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122, 2419–2429 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Hare, J. M. et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308, 2369–2379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Egeland, T. & Brinchmann, J. E. The REPAIR-AMI and ASTAMI trials: cell isolation procedures. Eur. Heart J. 28, 2174–2175 (2007).

    Article  PubMed  Google Scholar 

  55. 55

    Seeger, F. H. et al. Heparin disrupts the CXCR4/SDF-1 axis and impairs the functional capacity of bone marrow-derived mononuclear cells used for cardiovascular repair. Circ. Res. 111, 854–862 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  57. 57

    Perin, E. C. & Willerson, J. T. CD34+ autologous human stem cells in treating refractory angina. Circ. Res. 109, 351–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  Google Scholar 

  59. 59

    Ross, J. J. et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J. Clin. Invest. 116, 3139–3149 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Schwartz, R. E. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109, 1291–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Mangi, A. A. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9, 1195–1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Marban, E. & Malliaras, K. Mixed results for bone marrow-derived cell therapy for ischemic heart disease. JAMA 308, 2405–2406 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Losordo, D. W. et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ. Res. 109, 428–436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Heldman, A. W. et al. Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy: the TAC-HFT randomized trial. JAMA 311, 62–73 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Perin, E. C. et al. First in man transendocardial injection of autologous adipose-derived stem cells in patients with non revascularizable ischemic myocardium (PRECISE) [abstract]. Circulation 122, A17966 (2010).

    Google Scholar 

  66. 66

    Houtgraaf, J. H. et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 59, 539–540 (2012).

    Article  PubMed  Google Scholar 

  67. 67

    Ruifrok, W. P. et al. Estradiol-induced, endothelial progenitor cell-mediated neovascularization in male mice with hind-limb ischemia. Vasc. Med. 14, 29–36 (2009).

    Article  PubMed  Google Scholar 

  68. 68

    Lee, J. H., Lee, S. H., Yoo, S. Y., Asahara, T. & Kwon, S. M. CD34 hybrid cells promote endothelial colony-forming cell bioactivity and therapeutic potential for ischemic diseases. Arterioscler. Thromb. Vasc. Biol. 33, 1622–1634 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Losordo, D. W. et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ. Cardiovasc. Interv. 5, 821–830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    van Ramshorst, J. et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301, 1997–2004 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115, 3165–3172 (2007).

    Article  PubMed  Google Scholar 

  72. 72

    Vrtovec, B. et al. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation 128, S42–S49 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Heusch, G. SCIPIO brings new momentum to cardiac cell therapy. Lancet 378, 1827–1828 (2011).

    Article  PubMed  Google Scholar 

  75. 75

    Urbanek, K. et al. Human cardiac stem cells. J. Mol. Cell. Cardiol. 38, 838–839 (2005).

    Google Scholar 

  76. 76

    Chugh, A. R. et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126, S54–S64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Siu, C. W. & Tse, H. F. Cardiac regeneration: messages from CADUCEUS. Lancet 379, 870–871 (2012).

    Article  PubMed  Google Scholar 

  79. 79

    Chimenti, I. et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 106, 971–980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Messina, E. et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95, 911–921 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Johnston, P. V. et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120, 1075–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Murry, C. E., Palpant, N. J. & Maclellan, W. R. Cardiopoietry in motion: primed mesenchymal stem cells for ischemic cardiomyopathy. J. Am. Coll. Cardiol. 61, 2339–2340 (2013).

    Article  PubMed  Google Scholar 

  84. 84

    US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  85. 85

    US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  86. 86

    Fujita, J. Report of the American Heart Association (AHA) Scientific Sessions 2012, Los Angeles. Circ. J. 77, 35–40 (2013).

    Article  PubMed  Google Scholar 

  87. 87

    Behfar, A. & Terzic, A. Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nat. Clin. Pract. Cardiovasc. Med. 3 (Suppl. 1), S78–S82 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Bartunek, J. et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J. Am. Coll. Cardiol. 61, 2329–2338 (2013).

    Article  PubMed  Google Scholar 

  89. 89

    Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  Google Scholar 

  91. 91

    Behfar, A. et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med. 204, 405–420 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Behfar, A. et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J. 16, 1558–1566 (2002).

    Article  PubMed  Google Scholar 

  93. 93

    Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  94. 94

    US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  95. 95

    Assmus, B. et al. Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. JAMA 309, 1622–1631 (2013).

    Article  CAS  Google Scholar 

  96. 96

    Telukuntla, K. S., Suncion, V. Y., Schulman, I. H. & Hare, J. M. The advancing field of cell-based therapy: insights and lessons from clinical trials. J. Am. Heart Assoc. 2, e000338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Ranganath, S. H., Levy, O., Inamdar, M. S. & Karp, J. M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Passier, R., van Laake, L. W. & Mummery, C. L. Stem-cell-based therapy and lessons from the heart. Nature 453, 322–329 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Ellison, G. M. et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J. Am. Coll. Cardiol. 58, 977–986 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Linke, A. et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA 102, 8966–8971 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Beohar, N., Rapp, J., Pandya, S. & Losordo, D. W. Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J. Am. Coll. Cardiol. 56, 1287–1297 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Ripa, R. S. et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 113, 1983–1992 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Henry, T. D. et al. The VIVA trial: vascular endothelial growth factor in Ischemia for vascular angiogenesis. Circulation 107, 1359–1365 (2003).

    Article  CAS  Google Scholar 

  104. 104

    Gyöngyösi, M. et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation 112 (9 Suppl.), I157–I165 (2005).

    PubMed  Google Scholar 

  105. 105

    Gnecchi, M. et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661–669 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Losordo, D. W. et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98, 2800–2804 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Schumacher, B., Stegmann, T. & Pecher, P. The stimulation of neoangiogenesis in the ischemic human heart by the growth factor FGF: first clinical results. J. Cardiovasc. Surg. (Torino) 39, 783–789 (1998).

    CAS  Google Scholar 

  108. 108

    Gupta, R., Tongers, J. & Losordo, D. W. Human studies of angiogenic gene therapy. Circ. Res. 105, 724–736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Engelmann, M. G. et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J. Am. Coll. Cardiol. 48, 1712–1721 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Zbinden, S., Zbinden, R., Meier, P., Windecker, S. & Seiler, C. Safety and efficacy of subcutaneous-only granulocyte-macrophage colony-stimulating factor for collateral growth promotion in patients with coronary artery disease. J. Am. Coll. Cardiol. 46, 1636–1642 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Penn, M. S. Importance of the SDF-1:CXCR4 axis in myocardial repair. Circ. Res. 104, 1133–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Zhang, M. et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 21, 3197–3207 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Askari, A. T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Penn, M. S. et al. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ. Res. 112, 816–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Jujo, K. et al. CXC-chemokine receptor 4 antagonist AMD3100 promotes cardiac functional recovery after ischemia/reperfusion injury via endothelial nitric oxide synthase-dependent mechanism. Circulation 127, 63–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Singelyn, J. M. et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30, 5409–5416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Singelyn, J. M. et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59, 751–763 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Zhang, J. et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ. Res. 111, 1125–1136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6, 720–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Blin, G. et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J. Clin. Invest. 120, 1125–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  124. 124

    Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Fujita, J. & Sano, M. Treatment of the ventricular tachycardia with engraftment of pluripotent stem cells-derived cardiomyocytes. J. Mol. Cell. Cardiol. 53, 3–5 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Gepstein, L. et al. In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells 28, 2151–2161 (2010).

    Article  PubMed  Google Scholar 

  129. 129

    Hosoda, T. et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123, 1287–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Kajstura, J. et al. Cardiomyogenesis in the aging and failing human heart. Circulation 126, 1869–1881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Delewi, R. et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/eht372.

  133. 133

    Jeevanantham, V. et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126, 551–568 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Behfar, A. et al. Optimized delivery system achieves enhanced endomyocardial stem cell retention. Circ. Cardiovasc. Interv. 6, 710–718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Makkar, R. et al. The CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial. Circulation 124, 2373 (2011).

    Google Scholar 

  137. 137

    Jungebluth, P. et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 378, 1997–2004 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Atala, A. Tissue engineering of human bladder. Br. Med. Bull. 97, 81–104 (2011).

    Article  PubMed  Google Scholar 

  139. 139

    Marini, J. C. & Forlino, A. Replenishing cartilage from endogenous stem cells. N. Engl. J. Med. 366, 2522–2524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Andia, I. & Maffulli, N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat. Rev. Rheumatol. 9, 721–730 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to discussion of content, wrote, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Atta Behfar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Behfar, A., Crespo-Diaz, R., Terzic, A. et al. Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol 11, 232–246 (2014). https://doi.org/10.1038/nrcardio.2014.9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing