Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natriuretic peptides in cardiometabolic regulation and disease

Key Points

  • Identification of natriuretic peptide receptors in a broad range of tissues, including the pancreas, liver, and adipose tissues, implies biological effects beyond pressure–volume homeostasis

  • In population-based studies, low circulating concentrations of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are associated with obesity and metabolic dysfunction

  • Genetically determined increased concentrations of ANP and BNP are associated with reduced blood pressure and reduced risk of hypertension in animal models and in the general population

  • Natriuretic peptides are implicated in endogenous protection against atherosclerosis, thrombosis, myocardial ischaemia, and cardiac remodelling in experimental animal models, and large-scale clinical studies evaluating their infarct-sparing effects are in progress

  • Dysregulation of the natriuretic peptides might be important in the initiation of metabolic dysfunction and could lead to cardiovascular complications, such as atherosclerosis, thrombosis, hypertension, and myocardial ischaemia

Abstract

In the 30 years since the identification of the natriuretic peptides, their involvement in regulating fluid and blood pressure has become firmly established. Data indicating a role for these hormones in lifestyle-related metabolic and cardiovascular disorders have also accumulated over the past decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role in lifestyle-related metabolic and cardiovascular disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The natriuretic peptides exert their effects through transmembrane receptors: NPR-A, NPR-B, and NPR-C.
Figure 2: Within adipocytes, adrenergic stimulation through the β-AR stimulates lipolysis as well as a phenotypic change into a brown-like adipocyte with increased thermogenic capacity.

Similar content being viewed by others

References

  1. de Bold, A. J., Borenstein, H. B., Veress, A. T. & Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 28, 89–94 (1981).

    CAS  PubMed  Google Scholar 

  2. Sudoh, T. et al. Cloning and sequence analysis of cDNA encoding a precursor for human brain natriuretic peptide. Biochem. Biophys. Res. Commun. 159, 1427–1434 (1989).

    CAS  PubMed  Google Scholar 

  3. Sudoh, T., Minamino, N., Kangawa, K. & Matsuo, H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun. 168, 863–870 (1990).

    CAS  PubMed  Google Scholar 

  4. Kita, T. et al. Natriuretic and hypotensive effects of brain natriuretic peptide (BNP) in spontaneously hypertensive rats. Life Sci. 44, 1541–1545 (1989).

    CAS  PubMed  Google Scholar 

  5. Richards, A. M. et al. Atrial natriuretic hormone has biological effects in man at physiological plasma concentrations. J. Clin. Endocrinol. Metab. 67, 1134–1139 (1988).

    CAS  PubMed  Google Scholar 

  6. Burnett, J. C. Jr, Granger, J. P. & Opgenorth, T. J. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am. J. Physiol. 247, F863–F866 (1984).

    CAS  PubMed  Google Scholar 

  7. Davidson, N. C., Barr, C. S. & Struthers, A. D. C-type natriuretic peptide. An endogenous inhibitor of vascular angiotensin-converting enzyme activity. Circulation 93, 1155–1159 (1996).

    CAS  PubMed  Google Scholar 

  8. Hunt, P. J., Richards, A. M., Espiner, E. A., Nicholls, M. G. & Yandle, T. G. Bioactivity and metabolism of C-type natriuretic peptide in normal man. J. Clin. Endocrinol. Metab. 78, 1428–1435 (1994).

    CAS  PubMed  Google Scholar 

  9. Wei, C. M., Aarhus, L. L., Miller, V. M. & Burnett, J. C. Action of C-type natriuretic peptide in isolated canine arteries and veins. Am. J. Physiol. 264 (1 Pt 2), H71–H73 (1993).

    CAS  PubMed  Google Scholar 

  10. Mukoyama, M. et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Invest. 87, 1402–1412 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hasegawa, K. et al. Light and electron microscopic localization of brain natriuretic peptide in relation to atrial natriuretic peptide in porcine atrium. Immunohistocytochemical study using specific monoclonal antibodies. Circulation 84, 1203–1209 (1991).

    CAS  PubMed  Google Scholar 

  12. Goetze, J. P., Friis-Hansen, L., Rehfeld, J. F., Nilsson, B. & Svendsen, J. H. Atrial secretion of B-type natriuretic peptide. Eur. Heart J. 27, 1648–1650 (2006).

    CAS  PubMed  Google Scholar 

  13. Dietz, J. R. Release of natriuretic factor from rat heart–lung preparation by atrial distension. Am. J. Physiol. 247, R1093–R1096 (1984).

    CAS  PubMed  Google Scholar 

  14. Sawada, Y. et al. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptide are controlled by proprotein-processing endoprotease furin. J. Biol. Chem. 272, 20545–20554 (1997).

    CAS  PubMed  Google Scholar 

  15. Yan, W., Wu, F., Morser, J. & Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc. Natl Acad. Sci. USA 97, 8525–8529 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ichiki, T. et al. Corin is present in the normal human heart, kidney, and blood, with pro-B-type natriuretic peptide processing in the circulation. Clin. Chem. 57, 40–47 (2011).

    CAS  PubMed  Google Scholar 

  17. Takahashi, T., Allen, P. D. & Izumo, S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles: correlation with expression of the Ca2+-ATPase gene. Circ. Res. 71, 9–17 (1992).

    CAS  PubMed  Google Scholar 

  18. Suga, S. et al. Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta: possible existence of “vascular natriuretic peptide system”. J. Clin. Invest. 90, 1145–1149 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Herman, J. P., Langub, M. C. Jr & Watson, R. E. Jr. Localization of C-type natriuretic peptide mRNA in rat hypothalamus. Endocrinology 133, 1903–1906 (1993).

    CAS  PubMed  Google Scholar 

  20. Middendorff, R., Müller, D., Paust, H. J., Davidoff, M. S. & Mukhopadhyay, A. K. Natriuretic peptides in the human testis: evidence for a potential role of C-type natriuretic peptide in Leydig cells. J. Clin. Endocrinol. Metab. 81, 4324–4328 (1996).

    CAS  PubMed  Google Scholar 

  21. Wu, C., Wu, F., Pan, J., Morser, J. & Wu, Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J. Biol. Chem. 278, 25847–25852 (2003).

    CAS  PubMed  Google Scholar 

  22. Chauhan, S. D., Hobbs, A. J. & Ahluwalia, A. C-type natriuretic peptide: new candidate for endothelium-derived hyperpolarising factor. Int. J. Biochem. Cell Biol. 36, 1878–1881 (2004).

    CAS  PubMed  Google Scholar 

  23. Okamura, H. et al. Atrial natriuretic peptide receptors are present in brown adipose tissue. Biochem. Biophys. Res. Commun. 156, 1000–1006 (1988).

    CAS  PubMed  Google Scholar 

  24. Sarzani, R., Dessi-Fulgheri, P., Paci, V. M., Espinosa, E. & Rappelli, A. Expression of natriuretic peptide receptors in human adipose and other tissues. J. Endocrinol. Invest. 19, 581–585 (1996).

    CAS  PubMed  Google Scholar 

  25. Ropero, A. B. et al. The atrial natriuretic paptide and guanylyl cyclase-A system modulates pancreatic β-cell function. Endocrinology 151, 3665–3674 (2010).

    CAS  PubMed  Google Scholar 

  26. Herman, J. P., Dolgas, C. M., Rucker, D. & Langub, M. C. Jr. Localization of natriuretic peptide-activated guanylate cyclase mRNAs in the rat brain. J. Comp. Neurol. 369, 165–187 (1996).

    CAS  PubMed  Google Scholar 

  27. Schulz, S., Chinkers, M. & Garbers, D. L. The guanylate cyclase/receptor family of proteins. FASEB J. 3, 2026–2035 (1989).

    CAS  PubMed  Google Scholar 

  28. Chinkers, M., Singh, S. & Garbers, D. L. Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J. Biol. Chem. 266, 4088–4093 (1991).

    CAS  PubMed  Google Scholar 

  29. Koller, K. J. & Goeddel, D. V. Molecular biology of the natriuretic peptides and their receptors. Circulation 86, 1081–1088 (1992).

    CAS  PubMed  Google Scholar 

  30. Anand-Srivastava, M. B. Natriuretic peptide receptor-C signaling and regulation. Peptides 26, 1044–1059 (2005).

    CAS  PubMed  Google Scholar 

  31. Scotland, R. S. et al. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc. Natl Acad. Sci. USA 102, 14452–14457 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mouawad, R., Li, Y. & Anand-Srivastava, M. B. Atrial natriuretic peptide-C receptor-induced attenuation of adenylyl cyclase signaling activates phosphatidylinositol turnover in A10 vascular smooth muscle cells. Mol. Pharmacol. 65, 917–924 (2004).

    CAS  PubMed  Google Scholar 

  33. Suga, S. et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 130, 229–239 (1992).

    CAS  PubMed  Google Scholar 

  34. Lin, X., Hänze, J., Heese, F., Sodmann, R. & Lang, R. E. Gene expression of natriuretic peptide receptors in myocardial cells. Circ. Res. 77, 750–758 (1995).

    CAS  PubMed  Google Scholar 

  35. Schiffrin, E. L., Poissant, L., Cantin, M. & Thibault, G. Receptors for atrial natriuretic factor in cultured vascular smooth muscle cells. Life Sci. 38, 817–826 (1986).

    CAS  PubMed  Google Scholar 

  36. Burgess, M. D. et al. C-type natriuretic peptide receptor expression in pancreatic alpha cells. Histochem. Cell Biol. 132, 95–103 (2009).

    CAS  PubMed  Google Scholar 

  37. Anand-Srivastava, M. B., Gutkowska, J. & Cantin, M. The presence of atrial-natriuretic-factor receptors of ANF-R2 subtype in rat platelets: coupling to adenylate cyclase/cyclic AMP signal-transduction system. Biochem. J. 278, 211–217 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Komatsu, Y. et al. C-type natriuretic peptide (CNP) in rats and humans. Endocrinology 129, 1104–1106 (1991).

    CAS  PubMed  Google Scholar 

  39. Herman, J. P., Dolgas, C. M., Marcinek, R. & Langub, M. C. Jr. Expression and glucocorticoid regulation of natriuretic peptide clearance receptor (NPR-C) mRNA in rat brain and choroid plexus. J. Chem. Neuroanat. 11, 257–265 (1996).

    CAS  PubMed  Google Scholar 

  40. Yamashita, Y. et al. Concentration of mRNA for the natriuretic peptide receptor-C in hypertrophic chondrocytes of the fetal mouse tibia. J. Biochem. 127, 177–179 (2000).

    CAS  PubMed  Google Scholar 

  41. Costello-Boerrigter, L. C. & Burnett, J. C. Jr. The prognostic value of N-terminal proB-type natriuretic peptide. Nat. Clin. Pract. Cardiovasc. Med. 4, 194–201 (2005).

    Google Scholar 

  42. Chabot, J. G., Morel, G., Kopelman, H., Belles-Isles, M. & Heisler, S. Atrial natriuretic factor and exocrine pancreas: autoradiographic localization of binding sites and ultrastructural evidence for internalization of endogenous ANF. Pancreas 2, 404–413 (1987).

    CAS  PubMed  Google Scholar 

  43. Lindop, G. B., Mallon, E. A. & MacIntyre, G. Atrial natriuretic peptide in the heart and pancreas. Histol. Histopathol. 1, 147–154 (1986).

    CAS  PubMed  Google Scholar 

  44. Jeandel, L. et al. Immunocytochemical localization, binding, and effects of atrial natriuretic peptide in rat adipocytes. Mol. Cell. Endocrinol. 62, 69–78 (1989).

    CAS  PubMed  Google Scholar 

  45. Sengenès, C., Berlan, M., De Glisezinski, I., Lafontan, M. & Galitzky, J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 14, 1345–1351 (2000).

    PubMed  Google Scholar 

  46. Sengenès, C. et al. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J. Biol. Chem. 278, 48617–48626 (2003).

    PubMed  Google Scholar 

  47. Miyashita, K. et al. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58, 2880–2892 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Engeli, S. et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J. Clin. Invest. 122, 4675–4679 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Birkenfeld, A. L. et al. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J. Clin. Endocrinol. Metab. 90, 3622–3628 (2005).

    CAS  PubMed  Google Scholar 

  50. Bartels, E. D., Nielsen, J. M., Bisgaard, L. S., Goetze, J. P. & Nielsen, L. B. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology 151, 5218–5225 (2010).

    CAS  PubMed  Google Scholar 

  51. Heinisch, B. B. et al. B-type natriuretic peptide (BNP) affects the initial response to intravenous glucose: a randomised placebo-controlled cross-over study in healthy men. Diabetologia 55, 1400–1405 (2012).

    CAS  PubMed  Google Scholar 

  52. Moro, C. et al. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J. 18, 908–910 (2004).

    CAS  PubMed  Google Scholar 

  53. Moro, C. et al. Exercise-induced lipid mobilization in subcutaneous adipose tissue is mainly related to natriuretic peptides in overweight men. Am. J. Physiol. Endocrinol. Metab. 295, E505–E513 (2008).

    CAS  PubMed  Google Scholar 

  54. Olsen, M. H. et al. N-terminal pro brain natriuretic peptide is inversely related to metabolic cardiovascular risk factors and the metabolic syndrome. Hypertension 46, 660–666 (2005).

    CAS  PubMed  Google Scholar 

  55. Wang, T. J. et al. Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals. Circulation 115, 1345–1353 (2007).

    CAS  PubMed  Google Scholar 

  56. Meirhaeghe, A. et al. Association between the T-381C polymorphism of the brain natriuretic peptide gene and risk of type 2 diabetes in human populations. Hum. Mol. Genet. 16, 1343–1350 (2007).

    CAS  PubMed  Google Scholar 

  57. Magnusson, M. et al. Low plasma level of atrial natriuretic peptide predicts development of diabetes: the prospective Malmo Diet and Cancer study. J. Clin. Endocrinol. Metab. 97, 638–645 (2012).

    CAS  PubMed  Google Scholar 

  58. Goetze, J. P. Plasma proANP decreases after meal intake. Clin. Chem. 59, 1270–1271 (2013).

    PubMed  Google Scholar 

  59. Swinburn, B., Sacks, G. & Ravussin, E. Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am. J. Clin. Nutr. 90, 1453–1456 (2009).

    CAS  PubMed  Google Scholar 

  60. Addisu, A., Gower, W. R. Jr, Landon, C. S. & Dietz, J. R. B-type natriuretic peptide decreases gastric emptying and absorption. Exp. Biol. Med. 233, 475–482 (2008).

    CAS  Google Scholar 

  61. Vila, G. et al. B-type natriuretic peptide modulates ghrelin, hunger, and satiety in healthy men. Diabetes 61, 2592–2596 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsukamoto, O. et al. Natriuretic peptides enhance the production of adiponectin in human adipocytes and in patients with chronic heart failure. J. Am. Coll. Cardiol. 53, 2070–2077 (2009).

    CAS  PubMed  Google Scholar 

  63. Birkenfeld, A. L. et al. Atrial natriuretic peptide and adiponectin interactions in man. PLoS ONE 7, e43238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    CAS  PubMed  Google Scholar 

  66. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  67. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Orava, J. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity 21, 2279–2287 (2013).

    CAS  PubMed  Google Scholar 

  69. Lockie, S. H. et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61, 2753–2762 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, M. et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat. Med. 19, 567–575 (2013).

    CAS  PubMed  Google Scholar 

  71. Steinhelper, M. E., Cochrane, K. L. & Field, L. J. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension 16, 301–307 (1990).

    CAS  PubMed  Google Scholar 

  72. Ogawa, Y. et al. Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J. Clin. Invest. 93, 1911–1921 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. John, S. W. et al. Blood pressure and fluid-electrolyte balance in mice with reduced or absent ANP. Am. J Physiol. 271 (1 Pt 2), R109–R114 (1996).

    CAS  PubMed  Google Scholar 

  74. Oliver, P. M. et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc. Natl Acad. Sci. USA 94, 14730–14735 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lopez, M. J. et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378, 65–68 (1995).

    CAS  PubMed  Google Scholar 

  76. Oliver, P. M. et al. Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc. Natl Acad. Sci. USA 95, 2547–2551 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cataliotti, A. et al. Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation 123, 1297–1305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cataliotti, A., Costello-Boerrigter, L. C., Chen, H. H., Textor, S. C. & Burnett, J. C. Jr. Sustained blood pressure-lowering actions of subcutaneous B-type natriuretic peptide (nesiritide) in a patient with uncontrolled hypertension. Mayo Clin. Proc. 87, 413–415 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Cannone, V. et al. Atrial natriuretic peptide genetic variant rs5065 and risk for cardiovascular disease in the general community: a 9-year follow-up study. Hypertension 62, 860–865 (2013).

    CAS  PubMed  Google Scholar 

  80. Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41, 348–353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Arora, P. et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J. Clin. Invest. 123, 3378–3382 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Belluardo, P. et al. Lack of activation of molecular forms of the BNP system in human grade 1 hypertension and relationship to cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 291, H1529–H1535 (2006).

    CAS  PubMed  Google Scholar 

  83. Macheret, F. et al. Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J. Am. Coll. Cardiol. 60, 1558–1565 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dries, D. L. et al. Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation 112, 2403–2410 (2005).

    CAS  PubMed  Google Scholar 

  85. Wang, T. J. et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 109, 594–600 (2004).

    CAS  PubMed  Google Scholar 

  86. Asferg, C. L. et al. Relative atrial natriuretic peptide deficiency and inadequate renin and angiotensin II suppression in obese hypertensive men. Hypertension 62, 147–153 (2013).

    CAS  PubMed  Google Scholar 

  87. Chan, J. C. et al. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc. Natl Acad. Sci. USA 102, 785–790 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Matsukawa, N. et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl Acad. Sci. USA 96, 7403–7408 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    CAS  PubMed  Google Scholar 

  90. Weber, N. C., Blumenthal, S. B., Hartung, T., Vollmar, A. M. & Kiemer, A. K. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression—involvement of p38 MAPK and MKP-1. J. Leukoc. Biol. 4, 932–941 (2003).

    Google Scholar 

  91. Burger, P. C. & Wagner, D. D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101, 2661–2666 (2003).

    CAS  PubMed  Google Scholar 

  92. Hutchinson, H. G., Trindade, P. T., Cunanan, D. B., Wu, C. F. & Pratt, R. E. Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc. Res. 35, 158–167 (1997).

    CAS  PubMed  Google Scholar 

  93. Ikeda, M. et al. Natriuretic peptide family as a novel antimigration factor of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 17, 731–736 (1997).

    CAS  PubMed  Google Scholar 

  94. Itoh, H., Pratt, R. E. & Dzau, V. J. Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J. Clin. Invest. 86, 1690–1697 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kohno, M. et al. Effect of natriuretic peptide family on the oxidized LDL-induced migration of human coronary artery smooth muscle cells. Circ. Res. 81, 585–590 (1997).

    CAS  PubMed  Google Scholar 

  96. Shinomiya, M. et al. C-type natriuretic peptide inhibits intimal thickening of rabbit carotid artery after balloon catheter injury. Biochem. Biophys. Res. Commun. 205, 1051–1056 (1994).

    CAS  PubMed  Google Scholar 

  97. Ueno, H. et al. Local expression of C-type natriuretic peptide markedly suppresses neointimal formation in rat injured arteries through an autocrine/paracrine loop. Circulation 96, 2272–2279 (1997).

    CAS  PubMed  Google Scholar 

  98. Gaspari, T. A., Barber, M. N., Woods, R. L. & Dusting, G. J. Type-C natriuretic peptide prevents development of experimental atherosclerosis in rabbits. Clin. Exp. Pharmacol. Physiol. 27, 653–655 (2000).

    CAS  PubMed  Google Scholar 

  99. Larifla, L. et al. Inhibition of vascular smooth muscle cell proliferation and migration in vitro and neointimal hyperplasia in vivo by adenoviral-mediated atrial natriuretic peptide delivery. J. Gene Med. 14, 459–467 (2012).

    CAS  PubMed  Google Scholar 

  100. Bouchie, J. L., Hansen, H. & Feener, E. P. Natriuretic factors and nitric oxide suppress plasminogen activator inhibitor-1 expression in vascular smooth muscle cells: role of cGMP in the regulation of the plasminogen system. Arterioscler. Thromb. Vasc. Biol. 18, 1771–1779 (1998).

    CAS  PubMed  Google Scholar 

  101. Yoshizumi, M. et al. Natriuretic peptides regulate the expression of tissue factor and PAI-1 in endothelial cells. Thromb. Haemost. 82, 1497–1503 (1999).

    CAS  PubMed  Google Scholar 

  102. Kairuz, E. M. et al. C-type natriuretic peptide (CNP) suppresses plasminogen activator inhibitor-1 (PAI-1) in vivo. Cardiovasc. Res. 66, 574–582 (2005).

    CAS  PubMed  Google Scholar 

  103. Qian, J. Y. et al. Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis, and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries. Circ. Res. 91, 1063–1069 (2002).

    CAS  PubMed  Google Scholar 

  104. Loeb, A. L. & Gear, A. R. Potentiation of platelet aggregation by atrial natriuretic peptide. Life Sci. 43, 731–738 (1988).

    CAS  PubMed  Google Scholar 

  105. De Caterina, R., Volpe, M., Atlas, S. A. & Weksler, B. B. Effects of atrial natriuretic factor on human platelet function. Life Sci. 37, 1395–1402 (1985).

    CAS  PubMed  Google Scholar 

  106. Borgognone, A., Lowe, K. L., Watson, S. P. & Madhani, M. Natriuretic peptides induce weak VASP phosphorylation at serine 239 in platelets. Platelets 25, 1–7 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Strom, T. M., Weil, J. & Bidlingmaier, F. Platelet receptors for atrial natriuretic peptide in man. Life Sci. 40, 769–773 (1987).

    CAS  PubMed  Google Scholar 

  108. Aszódi, A. et al. The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J. 18, 37–48 (1999).

    PubMed  PubMed Central  Google Scholar 

  109. Akbar, H., Navran, S. S., Chang, J., Miller, D. D. & Feller, D. R. Investigation of the effects of phospholipase C on human platelets: evidence that aggregation induced by phospholipase C is independent of prostaglandin generation, released ADP and is modulated by cyclic AMP. Thromb. Res. 27, 405–417 (1982).

    CAS  PubMed  Google Scholar 

  110. Butt, E. et al. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 269, 14509–14517 (1994).

    CAS  PubMed  Google Scholar 

  111. Smolenski, A. et al. Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J. Biol. Chem. 273, 20029–20035 (1998).

    CAS  PubMed  Google Scholar 

  112. Zeng, G. et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101, 1539–1545 (2000).

    CAS  PubMed  Google Scholar 

  113. Hashim, S., Li, Y. & Anand-Srivastava, M. B. Small cytoplasmic domain peptides of natriuretic peptide receptor-C attenuate cell proliferation through Giα protein/MAP kinase/PI3-kinase/AKT pathways. Am. J. Physiol. Heart Circ. Physiol. 291, H3144–H3153 (2006).

    CAS  PubMed  Google Scholar 

  114. Alexander, M. R., Knowles, J. W., Nishikimi, T. & Maeda, N. Increased atherosclerosis and smooth muscle cell hypertrophy in natriuretic peptide receptor A−/− apolipoprotein E−/− mice. Arterioscler. Thromb. Vasc. Biol. 23, 1077–1082 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Naruko, T. et al. C-type natriuretic peptide in human coronary atherosclerotic lesions. Circulation 94, 3103–3108 (1996).

    CAS  PubMed  Google Scholar 

  116. Vlachopoulos, C. et al. Amino-terminal pro-C-type natriuretic peptide is associated with arterial stiffness, endothelial function and early atherosclerosis. Atherosclerosis 211, 649–655 (2010).

    CAS  PubMed  Google Scholar 

  117. Igaki, T. et al. Insulin suppresses endothelial secretion of C-type natriuretic peptide, a novel endothelium-derived relaxing peptide. Diabetes 45 (Suppl. 3), S62–S64 (1996).

    CAS  PubMed  Google Scholar 

  118. Toth, M. et al. Hypoxia stimulates release of ANP and BNP from perfused rat ventricular myocardium. Am. J. Physiol. 266 (4 Pt 2), H1572–H1580 (1994).

    CAS  PubMed  Google Scholar 

  119. Tateishi, J., Masutani, M., Ohyanagi, M. & Iwasaki, T. Transient increase in plasma brain (B-type) natriuretic peptide after percutaneous transluminal coronary angioplasty. Clin. Cardiol. 23, 776–780 (2000).

    CAS  PubMed  Google Scholar 

  120. Goetze, J. P. et al. Increased cardiac BNP expression associated with myocardial ischemia. FASEB J. 17, 1105–1107 (2003).

    CAS  PubMed  Google Scholar 

  121. Tamura, N. et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc. Natl Acad. Sci. USA 97, 4239–4244 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Langenickel, T. H. et al. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc. Natl Acad. Sci. USA 103, 4735–4740 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, Y. et al. Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur. J. Heart Fail. 9, 548–557 (2007).

    CAS  PubMed  Google Scholar 

  124. Soeki, T. et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J. Am. Coll. Cardiol. 45, 608–616 (2005).

    CAS  PubMed  Google Scholar 

  125. Horio, T. et al. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 144, 2279–2284 (2003).

    CAS  PubMed  Google Scholar 

  126. McKie, P. M., Sangaralingham, S. J. & Burnett, J. C. Jr. CD-NP: an innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr. Heart Fail. Rep. 7, 93–99 (2010).

    CAS  PubMed  Google Scholar 

  127. D'Souza, S. P. et al. B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am. J. Physiol. Heart Circ. Physiol. 284, H1592–H1600 (2003).

    CAS  PubMed  Google Scholar 

  128. Burley, D. S. & Baxter, G. F. B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Res. Cardiol. 102, 529–541 (2007).

    CAS  PubMed  Google Scholar 

  129. Kousholt, B. S. et al. Natriuretic peptide infusion reduces myocardial injury during acute ischemia/reperfusion. Cardiovasc. Endocrin. 1, 4–12 (2012).

    CAS  Google Scholar 

  130. Okawa, H. et al. Preischemic infusion of alpha-human atrial natriuretic peptide elicits myoprotective effects against ischemia reperfusion in isolated rat hearts. Mol. Cell. Biochem. 248, 171–177 (2003).

    CAS  PubMed  Google Scholar 

  131. Yang, X. M., Philipp, S., Downey, J. M. & Cohen, M. V. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res. Cardiol. 101, 311–318 (2006).

    CAS  PubMed  Google Scholar 

  132. Zhang, W. W., Hasaniya, N. W., Premaratne, S. & McNamara, J. J. Atrial natriuretic peptide protects against ischemia–reperfusion injury in rabbit hearts in vivo. Vasc. Endovasc. Surg. 42, 263–267 (2008).

    Google Scholar 

  133. Hobbs, A., Foster, P., Prescott, C., Scotland, R. & Ahluwalia, A. Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation 110, 1231–1235 (2004).

    CAS  PubMed  Google Scholar 

  134. Kitakaze, M. et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370, 1483–1493 (2007).

    CAS  PubMed  Google Scholar 

  135. Chen, H. H. et al. Low-dose nesiritide in human anterior myocardial infarction suppresses aldosterone and preserves ventricular function and structure: a proof of concept study. Heart 95, 1315–1319 (2009).

    CAS  PubMed  Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  137. Sangaralingham, S. J., Burnett, J. C. Jr, Mckie, P. M., Schirger, J. A. & Chen, H. H. Rationale and design of a randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy of B-type natriuretic peptide for the preservation of left ventricular function after anterior myocardial infarction. J. Card. Fail. 19, 533–539 (2013).

    CAS  PubMed  Google Scholar 

  138. Gorbe, A. et al. Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Res. Cardiol. 105, 643–650 (2010).

    CAS  PubMed  Google Scholar 

  139. Fiedler, B. et al. cGMP-dependent protein kinase type I inhibits TAB1-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes. J. Biol. Chem. 281, 32831–32840 (2006).

    CAS  PubMed  Google Scholar 

  140. Ren, B. et al. Brain natriuretic peptide limits myocardial infarct size dependent of nitric oxide synthase in rats. Clin. Chim. Acta 377, 83–87 (2007).

    CAS  PubMed  Google Scholar 

  141. Murthy, K. S., Teng, B., Jin, J. & Makhlouf, G. M. G protein-dependent activation of smooth muscle eNOS via natriuretic peptide clearance receptor. Am. J. Physiol. 275 (6 Pt 1), C1409–C1416 (1998).

    CAS  PubMed  Google Scholar 

  142. Hobbs, A., Foster, P., Prescott, C., Scotland, R. & Ahluwalia, A. Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury. Circulation 110, 1231–1235 (2004).

    CAS  PubMed  Google Scholar 

  143. Mtairag, el M. et al. Pharmacological potentiation of natriuretic peptide limits polymorphonuclear neutrophil-vascular cell interactions. Arterioscler. Thromb. Vasc. Biol. 22, 1824–1831 (2002).

    CAS  Google Scholar 

  144. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128, e240–e327 (2013).

    PubMed  Google Scholar 

  145. Hawkridge, A. M. et al. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc. Natl Acad. Sci. USA 102, 17442–17447 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Niederkofler, E. E. et al. Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure. Circ. Heart Fail. 1, 258–264 (2008).

    CAS  PubMed  Google Scholar 

  147. Miller, W. L. et al. Comparison of mass spectrometry and clinical assay measurements of circulating fragments of B-type natriuretic peptide in patients with chronic heart failure. Circ. Heart Fail. 4, 355–360 (2011).

    CAS  PubMed  Google Scholar 

  148. Sodi, R., Dubuis, E., Shenkin, A. & Hart, G. B-type natriuretic peptide (BNP) attenuates the L-type calcium current and regulates ventricular myocyte function. Regul. Pept. 151, 95–105 (2008).

    CAS  PubMed  Google Scholar 

  149. Murthy, K. S. & Makhlouf, G. M. Identification of the G protein-activating domain of the natriuretic peptide clearance receptor (NPR-C). J. Biol. Chem. 274, 17587–17592 (1999).

    CAS  PubMed  Google Scholar 

  150. Cao, L. & Gardner, D. G. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25, 227–234 (1995).

    CAS  PubMed  Google Scholar 

  151. Tokudome, T. et al. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology 145, 2131–2140 (2004).

    CAS  PubMed  Google Scholar 

  152. Horio, T. et al. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension 35, 19–24 (2000).

    CAS  PubMed  Google Scholar 

  153. Fujita, S. et al. Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels 28, 646–657 (2013).

    PubMed  Google Scholar 

  154. Yasoda, A. et al. Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J. Biol. Chem. 273, 11695–11700 (1998).

    CAS  PubMed  Google Scholar 

  155. Mericq, V., Uyeda, J. A., Barnes, K. M., De Luca, F. & Baron, J. Regulation of fetal rat bone growth by C-type natriuretic peptide and cGMP. Pediatr. Res. 47, 189–193 (2000).

    CAS  PubMed  Google Scholar 

  156. Chusho, H. et al. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc. Natl Acad. Sci. USA 98, 4016–4021 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bartels, C. F. et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am. J. Hum. Genet. 75, 27–34 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Middendorff, R., Müller, D., Paust, H. J., Holstein, A. F. & Davidoff, M. S. New aspects of Leydig cell function. Adv. Exp. Med. Biol. 424, 125–138 (1997).

    CAS  PubMed  Google Scholar 

  159. Middendorff, R. et al. Multiple roles of the messenger molecule cGMP in testicular function. Andrologia 32, 55–59 (2000).

    CAS  PubMed  Google Scholar 

  160. Carvajal, J. A., Aguan, K., Thompson, L. P., Buhimschi, I. A. & Weiner, C. P. Natriuretic peptide-induced relaxation of myometrium from the pregnant guinea pig is not mediated by guanylate cyclase activation. J. Pharmacol. Exp. Ther. 297, 181–188 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.E.Z. and J.P.G. are supported by unrestricted grants from Novo Nordisk A/S and the Research Council at Copenhagen University Hospital, Rigshospitalet, Denmark. The funding had no role in the present manuscript and only supported a postdoctoral salary for N.E.Z.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data, contributed to the discussion of content, and reviewed/edited the article before submission. The manuscript was written by N.E.Z. and J.P.G.

Corresponding author

Correspondence to Jens P. Goetze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zois, N., Bartels, E., Hunter, I. et al. Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol 11, 403–412 (2014). https://doi.org/10.1038/nrcardio.2014.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.64

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research