Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of 3D wall motion tracking in heart failure

Abstract

Heart failure is a major health problem in developed countries and a growing one in developing countries. Cardiac remodeling in heart failure affects myocardial mechanics, which requires comprehensive evaluation in three dimensions. The novel technique of 3D wall motion tracking applies speckle tracking technology to full volume, 3D echocardiographic datasets. Quantification of conventional and novel left ventricular (LV) parameters including volumes, ejection fraction, global and regional 3D strain, endocardial area strain, twist, and dyssynchrony, and identification of the site of latest mechanical activation are feasible on the basis of a single acquisition of a full-volume dataset. Clinical applications of 3D wall motion tracking include the assessment of global and regional LV performance in ischemic and nonischemic heart diseases, evaluation of mechanics in cardiomyopathies and congenital heart disease, potential selection of patients for cardiac resynchronization therapy and prediction of their response, and detection of subclinical cardiac dysfunction in diseases with likelihood of progression to heart failure. Technological advances with improvement in spatial and temporal resolution of this novel imaging modality are expected. Although 3D wall motion tracking is still in its infancy, this method has begun to provide new insights into LV mechanics and has already found clinical applications. Future developments in 3D assessment of right ventricular and myocardial layer-specific mechanics are awaited.

Key Points

  • Remodeling of the cardiomyocyte and noncardiomyocyte components of the myocardium in heart failure influences cardiac mechanics

  • Comprehensive evaluation of cardiac mechanics requires a 3D imaging approach

  • Novel 3D wall motion tracking allows the assessment of left ventricular volumes, global and regional myocardial deformation, twist mechanics, and mechanical dyssynchrony with a single full volume image acquisition

  • Wall motion tracking in three dimensions shows promise for the assessment of myocardial function, the detection of subclinical cardiac dysfunction, and the selection of patients for cardiac resynchronization therapy

  • 3D wall motion tracking could also improve our understanding of the mechanics involved in cardiomyopathies and congenital heart disease

  • Optimization of spatial and temporal resolution of 3D myocardial deformation analysis is expected with advances in 3D echocardiographic technology

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myocardial deformation in three dimensions.
Figure 2: Twist mechanics of the left ventricle.
Figure 3: Comparison between 2D speckle tracking and 3D wall motion tracking.
Figure 4: Measurements of left ventricular strain using 3D wall motion tracking.
Figure 5: Area tracking of endocardial surface and calculation of peak area strain.
Figure 6: Assessment of left ventricular twist by 3D wall motion tracking.
Figure 7: Identification of the site of latest mechanical activation and monitoring of response to CRT by 3D wall motion tracking.

Similar content being viewed by others

References

  1. [No authors listed] Editorial. On the horizon in heart failure. Lancet 378, 637 (2011).

  2. Roger, V. L. et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125, e2–e220 (2012).

    Article  PubMed  Google Scholar 

  3. Cowie, M. R. et al. The epidemiology of heart failure. Eur. Heart J. 18, 208–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Davies, M. et al. Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study. Lancet 358, 439–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Huffman, M. D. & Prabhakaran, D. Heart failure: epidemiology and prevention in India. Natl Med. J. India 23, 283–288 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Jiang, H. & Ge, J. Epidemiology and clinical management of cardiomyopathies and heart failure in China. Heart 95, 1727–1731 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Celermajer, D. S., Chow, C. K., Marijon, E., Anstey, N. M. & Woo, K. S. Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2012.03.074.

  8. Moons, P., Bovijn, L., Budts, W., Belmans, A. & Gewillig, M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 122, 2264–2272 (2010).

    Article  PubMed  Google Scholar 

  9. Bolger, A. P., Coats, A. J. & Gatzoulis, M. A. Congenital heart disease: the original heart failure syndrome. Eur. Heart J. 24, 970–976 (2003).

    Article  PubMed  Google Scholar 

  10. Hunt, S. A. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J. Am. Coll. Cardiol. 46, e1–e82 (2005).

    Article  PubMed  Google Scholar 

  11. Gottdiener, J. S. et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J. Am. Soc. Echocardiogr. 17, 1086–1119 (2004).

    PubMed  Google Scholar 

  12. Lang, R. M. et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18, 1440–1463 (2005).

    Article  PubMed  Google Scholar 

  13. Shah, A. M. & Solomon, S. D. Myocardial deformation imaging: current status and future directions. Circulation 125, e244–e248 (2012).

    PubMed  Google Scholar 

  14. Gorcsan, J. 3rd & Tanaka, H. Echocardiographic assessment of myocardial strain. J. Am. Coll. Cardiol. 58, 1401–1413 (2011).

    Article  PubMed  Google Scholar 

  15. Mor-Avi, V. et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur. J. Echocardiogr. 12, 167–205 (2011).

    Article  PubMed  Google Scholar 

  16. Heimdal, A., Stoylen, A., Torp, H. & Skjaerpe, T. Real-time strain rate imaging of the left ventricle by ultrasound. J. Am. Soc. Echocardiogr. 11, 1013–1019 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Urheim, S., Edvardsen, T., Torp, H., Angelsen, B. & Smiseth, O. A. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 102, 1158–1164 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Leitman, M. et al. Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J. Am. Soc. Echocardiogr. 17, 1021–1029 (2004).

    Article  PubMed  Google Scholar 

  19. Reisner, S. A. et al. Global longitudinal strain: a novel index of left ventricular systolic function. J. Am. Soc. Echocardiogr. 17, 630–633 (2004).

    Article  PubMed  Google Scholar 

  20. Amundsen, B. H. et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 47, 789–793 (2006).

    Article  PubMed  Google Scholar 

  21. Crosby, J. et al. 3-D speckle tracking for assessment of regional left ventricular function. Ultrasound Med. Biol. 35, 458–471 (2009).

    Article  PubMed  Google Scholar 

  22. Takeguchi, T., Nishiura, M., Abe, Y., Ohuchi, H. & Kawagishi, T. Practical considerations for a method of rapid cardiac function analysis based on three-dimensional speckle tracking in a three-dimensional diagnostic ultrasound system. J. Med. Ultrasonics 37, 41–49 (2010).

    Article  Google Scholar 

  23. Jessup, M. & Brozena, S. Heart failure. N. Engl. J. Med. 348, 2007–2018 (2003).

    Article  PubMed  Google Scholar 

  24. Shah, A. M. & Mann, D. L. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378, 704–712 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mudd, J. O. & Kass, D. A. Tackling heart failure in the twenty-first century. Nature 451, 919–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Diwan, A. & Dorn, G. W. 2nd. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 22, 56–64 (2007).

    CAS  Google Scholar 

  27. van Heerebeek, L. et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113, 1966–1973 (2006).

    Article  PubMed  Google Scholar 

  28. Zile, M. R. et al. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124, 2491–2501 (2011).

    Article  PubMed  Google Scholar 

  29. Foo, R. S., Mani, K. & Kitsis, R. N. Death begets failure in the heart. J. Clin. Invest. 115, 565–571 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olivetti, G. et al. Apoptosis in the failing human heart. N. Engl. J. Med. 336, 1131–1141 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Wencker, D. et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest. 111, 1497–1504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakayama, H. et al. Ca2+-and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J. Clin. Invest. 117, 2431–2444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsui, T. et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277, 22896–22901 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kung, G., Konstantinidis, K. & Kitsis, R. N. Programmed necrosis, not apoptosis, in the heart. Circ. Res. 108, 1017–1036 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Nishida, K., Kyoi, S., Yamaguchi, O., Sadoshima, J. & Otsu, K. The role of autophagy in the heart. Cell Death Differ. 16, 31–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–1793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber, K. T. et al. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 82, 1387–1401 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Volders, P. G. et al. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J. Mol. Cell. Cardiol. 25, 1317–1323 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Spinale, F. G. et al. Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ. Res. 85, 364–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Thomas, C. V. et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97, 1708–1715 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lehnart, S. E., Maier, L. S. & Hasenfuss, G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail. Rev. 14, 213–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ingwall, J. S. Energy metabolism in heart failure and remodelling. Cardiovasc. Res. 81, 412–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. McCulloch, A. D. in The Biomedical Engineering Handbook 2nd edn (ed. Bronzino, J. D.) 1–27 (CRC Press LLC, Boca Raton, 2000).

    Google Scholar 

  45. Geyer, H. et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J. Am. Soc. Echocardiogr. 23, 351–369 (2010).

    Article  PubMed  Google Scholar 

  46. Sengupta, P. P. et al. Left ventricular structure and function: basic science for cardiac imaging. J. Am. Coll. Cardiol. 48, 1988–2001 (2006).

    Article  PubMed  Google Scholar 

  47. Buckberg, G., Hoffman, J. I., Mahajan, A., Saleh, S. & Coghlan, C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118, 2571–2587 (2008).

    Article  PubMed  Google Scholar 

  48. D'Hooge, J. et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur. J. Echocardiogr. 1, 154–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Dandel, M. & Hetzer, R. Echocardiographic strain and strain rate imaging—clinical applications. Int. J. Cardiol. 132, 11–24 (2009).

    Article  PubMed  Google Scholar 

  50. Vendelin, M., Bovendeerd, P. H., Engelbrecht, J. & Arts, T. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol. Heart Circ. Physiol. 283, H1072–H1081 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Geerts, L., Bovendeerd, P., Nicolay, K. & Arts, T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am. J. Physiol. Heart Circ. Physiol. 283, H139–H145 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Lorenz, C. H., Pastorek, J. S. & Bundy, J. M. Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 2, 97–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Notomi, Y. et al. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am. J. Physiol. Heart Circ. Physiol. 294, H505–H513 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Notomi, Y. et al. Enhanced ventricular untwisting during exercise: a mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation 113, 2524–2533 (2006).

    Article  PubMed  Google Scholar 

  55. Burns, A. T., La Gerche, A., Prior, D. L. & Macisaac, A. I. Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc. Imaging 2, 709–716 (2009).

    Article  PubMed  Google Scholar 

  56. Notomi, Y. et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging. Circulation 111, 1141–1147 (2005).

    Article  PubMed  Google Scholar 

  57. Notomi, Y. et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 45, 2034–2041 (2005).

    Article  PubMed  Google Scholar 

  58. Blessberger, H. & Binder, T. Two dimensional speckle tracking echocardiography: basic principles. Heart 96, 716–722 (2010).

    Article  PubMed  Google Scholar 

  59. Henson, R. E., Song, S. K., Pastorek, J. S., Ackerman, J. J. & Lorenz, C. H. Left ventricular torsion is equal in mice and humans. Am. J. Physiol. Heart Circ. Physiol. 278, H1117–H1123 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Maffessanti, F. et al. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am. J. Cardiol. 104, 1755–1762 (2009).

    Article  PubMed  Google Scholar 

  61. Nesser, H. J. et al. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur. Heart J. 30, 1565–1573 (2009).

    Article  PubMed  Google Scholar 

  62. Meunier, J. Tissue motion assessment from 3D echographic speckle tracking. Phys. Med. Biol. 43, 1241–1254 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, W., Yan, P., Sinusas, A. J., Thiele, K. & Duncan, J. S. Towards pointwise motion tracking in echocardiographic image sequences—comparing the reliability of different features for speckle tracking. Med. Image Anal. 10, 495–508 (2006).

    Article  PubMed  Google Scholar 

  64. Jia, C. et al. 4D elasticity imaging of PVA LV phantom integrated with pulsatile circulation system using 2D phased array. 2007 IEEE Ultrasonics Symposium Proceedings, 876–879 (2007).

  65. Chen, X. et al. 3-D correlation-based speckle tracking. Ultrason. Imaging 27, 21–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Brekke, S., Rabben, S. T., Haugen, A., Haugen, G. U., Steen, E. N. & Torp, H. G. Real-time volume stitching in 4D echocardiography. 2005 IEEE Ultrasonics Symposium Proceedings 2, 1228–1231 (2005).

    Article  Google Scholar 

  67. von Ramm, O. T., Smith, S. W. & Pavy, H. R. High-speed ultrasound volumetric imaging system. II. Parallel processing and image display. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 109–115 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Ogawa, K. et al. Usefulness of automated quantitation of regional left ventricular wall motion by a novel method of two-dimensional echocardiographic tracking. Am. J. Cardiol. 98, 1531–1537 (2006).

    Article  PubMed  Google Scholar 

  69. Seo, Y. et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ. Cardiovasc. Imaging 2, 451–459 (2009).

    Article  PubMed  Google Scholar 

  70. Schiller, N. B. et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 2, 358–367 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Cerqueira, M. D. et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105, 539–542 (2002).

    Article  PubMed  Google Scholar 

  72. Gérard, O. et al. Efficient model-based quantification of left ventricular function in 3-D echocardiography. IEEE Trans. Med. Imaging 21, 1059–1068 (2002).

    Article  PubMed  Google Scholar 

  73. Kleijn, S. A., Aly, M. F., Terwee, C. B., van Rossum, A. C. & Kamp, O. Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur. Heart J. Cardiovasc. Imaging 13, 159–168 (2012).

    Article  PubMed  Google Scholar 

  74. Kleijn, S. A. et al. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur. Heart J. Cardiovasc. Imaging http://dx.doi.org/10.1093/ehjci/jes030.

  75. Kleijn, S. A., Aly, M. F., Terwee, C. B., van Rossum, A. C. & Kamp, O. Comparison between direct volumetric and speckle tracking methodologies for left ventricular and left atrial chamber quantification by three-dimensional echocardiography. Am. J. Cardiol. 108, 1038–1044 (2011).

    Article  PubMed  Google Scholar 

  76. Abhayaratna, W. P. et al. Left atrial size: physiologic determinants and clinical applications. J. Am. Coll. Cardiol. 47, 2357–2363 (2006).

    Article  PubMed  Google Scholar 

  77. Rossi, A. et al. Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure). Eur. J. Heart Fail. 11, 929–936 (2009).

    Article  PubMed  Google Scholar 

  78. Pérez de Isla, L. et al. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J. Am. Soc. Echocardiogr. 22, 325–330 (2009).

    Article  PubMed  Google Scholar 

  79. Saito, K. et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J. Am. Soc. Echocardiogr. 22, 1025–1030 (2009).

    Article  PubMed  Google Scholar 

  80. Seo, Y., Ishizu, T., Enomoto, Y., Sugimori, H. & Aonuma, K. Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc. Imaging 4, 358–365 (2011).

    Article  PubMed  Google Scholar 

  81. Li, S. N., Wong, S. J. & Cheung, Y. F. Novel area strain based on three-dimensional wall motion analysis for assessment of global left ventricular performance after repair of tetralogy of Fallot. J. Am. Soc. Echocardiogr. 24, 819–825 (2011).

    Article  PubMed  Google Scholar 

  82. Jantunen, E. & Collan, Y. Transmural differences in ischaemic heart disease: a quantitative histologic study. Appl. Pathol. 7, 179–187 (1989).

    CAS  PubMed  Google Scholar 

  83. Kleijn, S. A., Aly, M. F., Terwee, C. B., van Rossum, A. C. & Kamp, O. Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J. Am. Soc. Echocardiogr. 24, 314–321 (2011).

    Article  PubMed  Google Scholar 

  84. Thebault, C. et al. Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur. J. Echocardiogr. 12, 26–32 (2011).

    Article  PubMed  Google Scholar 

  85. Zhou, Z. et al. Three-dimensional speckle-tracking imaging for left ventricular rotation measurement: an in vitro validation study. J. Ultrasound Med. 29, 903–909 (2010).

    Article  PubMed  Google Scholar 

  86. Ashraf, M., Zhou, Z., Nguyen, T., Ashraf, S. & Sahn, D. J. Apex to base left ventricular twist mechanics computed from high frame rate two-dimensional and three-dimensional echocardiography: a comparison study. J. Am. Soc. Echocardiogr. 25, 121–128 (2012).

    Article  PubMed  Google Scholar 

  87. Andrade, J. et al. Left ventricular twist: comparison between two- and three-dimensional speckle-tracking echocardiography in healthy volunteers. Eur. J. Echocardiogr. 12, 76–79 (2011).

    Article  PubMed  Google Scholar 

  88. Gorcsan, J. 3rd & Suffoletto, M. S. The role of tissue Doppler and strain imaging in predicting response to CRT. Europace 10 (Suppl. 3), iii80–iii87 (2008).

    PubMed  Google Scholar 

  89. Nesser, H. J. & Winter, S. Speckle tracking in the evaluation of left ventricular dyssynchrony. Echocardiography 26, 324–336 (2009).

    Article  PubMed  Google Scholar 

  90. Kapetanakis, S. et al. Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 112, 992–1000 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Tanaka, H., Hara, H., Saba, S. & Gorcsan, J. 3rd. Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am. J. Cardiol. 105, 235–242 (2010).

    Article  PubMed  Google Scholar 

  92. Tanaka, H. et al. Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. JACC Cardiovasc. Imaging 3, 461–471 (2010).

    Article  PubMed  Google Scholar 

  93. Tanaka, H. et al. Multidirectional left ventricular performance detected with three-dimensional speckle-tracking strain in patients with chronic right ventricular pacing and preserved ejection fraction. Eur. Heart J. Cardiovasc. Imaging http://dx.doi.org/10.1093/ehjci/jes056.

  94. Li, C. H. et al. Mechanical left ventricular dyssynchrony detection by endocardium displacement analysis with 3D speckle tracking technology. Int. J. Cardiovasc. Imaging 26, 867–870 (2010).

    Article  PubMed  Google Scholar 

  95. Tatsumi, K. et al. Mechanical left ventricular dyssynchrony in heart failure patients with narrow QRS duration as assessed by three-dimensional speckle area tracking strain. Am. J. Cardiol. 108, 867–872 (2011).

    Article  PubMed  Google Scholar 

  96. Tatsumi, K. et al. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy. Cardiovasc. Ultrasound 9, 11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tatsumi, K. et al. Relation between strain dyssynchrony index determined by comprehensive assessment using speckle-tracking imaging and long-term outcome after cardiac resynchronization therapy for patients with heart failure. Am. J. Cardiol. 109, 1187–1193 (2012).

    Article  PubMed  Google Scholar 

  98. Matsumoto, K. et al. Left ventricular dyssynchrony using three-dimensional speckle-tracking imaging as a determinant of torsional mechanics in patients with idiopathic dilated cardiomyopathy. Am. J. Cardiol. 109, 1197–1205 (2012).

    Article  PubMed  Google Scholar 

  99. Zhang, X. et al. Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. Am. J. Physiol. Heart Circ. Physiol. 289, H2724–H2732 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Han, C., Pogwizd, S. M., Killingsworth, C. R. & He, B. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm 8, 1266–1272 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Eyster, J. A. The relation between electrical and mechanical events in the dog's heart. Am. J. Physiol. 131, 760–767 (1940).

    Article  Google Scholar 

  102. Onishi, T. et al. Activation imaging: a novel approach to three-dimensional mechanical mapping using speckle tracking strain [abstract 907–7]. J. Am. Coll. Cardiol. 59, E1365 (2012).

    Article  Google Scholar 

  103. Wen, H., Liang, Z., Zhao, Y. & Yang, K. Feasibility of detecting early left ventricular systolic dysfunction using global area strain: a novel index derived from three-dimensional speckle-tracking echocardiography. Eur. J. Echocardiogr. 12, 910–916 (2011).

    Article  PubMed  Google Scholar 

  104. Reant, P. et al. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J. Am. Soc. Echocardiogr. 25, 68–79 (2012).

    Article  PubMed  Google Scholar 

  105. Pérez de Isla, L. et al. 3D-wall motion tracking: a new tool for myocardial contractility analysis. J. Cardiovasc. Med. (Hagerstown) http://dx.doi.org/10.2459/JCM.0b013e3283405b9b.

  106. Burns, A. T., La Gerche, A., D'hooge, J., MacIsaac, A. I. & Prior, D. L. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur. J. Echocardiogr. 11, 283–289 (2010).

    Article  PubMed  Google Scholar 

  107. Park, S. J., Nishimura, R. A., Borlaug, B. A., Sorajja, P. & Oh, J. K. The effect of loading alterations on left ventricular torsion: a simultaneous catheterization and two-dimensional speckle tracking echocardiographic study. Eur. J. Echocardiogr. 11, 770–777 (2010).

    Article  PubMed  Google Scholar 

  108. Hayat, D. et al. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am. J. Cardiol. 109, 180–186 (2012).

    Article  PubMed  Google Scholar 

  109. Cazeau, S. et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N. Engl. J. Med. 344, 873–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Abraham, W. T. et al. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346, 1845–1853 (2002).

    Article  PubMed  Google Scholar 

  111. Cleland, J. G. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Chung, E. S. et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 117, 2608–2616 (2008).

    Article  PubMed  Google Scholar 

  113. Kleijn, S. A. et al. A meta-analysis of left ventricular dyssynchrony assessment and prediction of response to cardiac resynchronization therapy by three-dimensional echocardiography. Eur. Heart J. Cardiovasc. Imaging 13, 763–775 (2012).

    Article  PubMed  Google Scholar 

  114. Tanaka, H. et al. Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the Speckle Tracking and Resynchronization (STAR) study. Eur. Heart J. 31, 1690–1700 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Meluzin, J. et al. Left ventricular mechanics in idiopathic dilated cardiomyopathy: systolic-diastolic coupling and torsion. J. Am. Soc. Echocardiogr. 22, 486–493 (2009).

    Article  PubMed  Google Scholar 

  116. Duan, F. et al. Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging. Cardiovasc. Ultrasound 10, 8 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Urbano Moral, J. A. et al. Left ventricular twist mechanics in hypertrophic cardiomyopathy assessed by three-dimensional speckle tracking echocardiography. Am. J. Cardiol. 108, 1788–1795 (2011).

    Article  PubMed  Google Scholar 

  118. Baccouche, H. et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 29, 668–677 (2012).

    Article  PubMed  Google Scholar 

  119. Baccouche, H., Maunz, M., Beck, T., Fogarassy, P. & Beyer, M. Echocardiographic assessment and monitoring of the clinical course in a patient with Tako-Tsubo cardiomyopathy by a novel 3D-speckle-tracking-strain analysis. Eur. J. Echocardiogr. 10, 729–731 (2009).

    PubMed  Google Scholar 

  120. Blessberger, H. & Binder, T. Two dimensional speckle tracking echocardiography: clinical applications. Heart 96, 2032–2040 (2010).

    Article  PubMed  Google Scholar 

  121. Galderisi, M. et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur. Heart J. Cardiovasc. Imaging 13, 730–738 (2012).

    Article  PubMed  Google Scholar 

  122. Saltijeral, A. et al. Myocardial strain characterization in different left ventricular adaptative responses to high blood pressure: a study based on 3D-wall motion tracking analysis. Echocardiography 27, 1238–1246 (2010).

    Article  PubMed  Google Scholar 

  123. Saltijeral, A. et al. Early myocardial deformation changes associated to isolated obesity: a study based on 3D-wall motion tracking analysis. Obesity (Silver Spring) 19, 2268–2273 (2011).

    Article  Google Scholar 

  124. Hare, J. L. et al. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am. Heart J. 158, 294–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Cheung, Y. F., Hong, W. J., Chan, G. C., Wong, S. J. & Ha, S. Y. Left ventricular myocardial deformation and mechanical dyssynchrony in children with normal ventricular shortening fraction after anthracycline therapy. Heart 96, 1137–1141 (2010).

    Article  PubMed  Google Scholar 

  126. Fonseca, C. G. et al. Three-dimensional assessment of left ventricular systolic strain in patients with type 2 diabetes mellitus, diastolic dysfunction, and normal ejection fraction. Am. J. Cardiol. 94, 1391–1395 (2004).

    Article  PubMed  Google Scholar 

  127. Nasir, K. et al. Regional left ventricular function in individuals with mild to moderate renal insufficiency: the Multi-Ethnic Study of Atherosclerosis. Am. Heart J. 153, 545–551 (2007).

    Article  PubMed  Google Scholar 

  128. Cho, G. Y. et al. Global 2-dimensional strain as a new prognosticator in patients with heart failure. J. Am. Coll. Cardiol. 54, 618–624 (2009).

    Article  PubMed  Google Scholar 

  129. Hung, C. L. et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J. Am. Coll. Cardiol. 56, 1812–1822 (2010).

    Article  PubMed  Google Scholar 

  130. Nahum, J. et al. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ. Cardiovasc. Imaging 3, 249–256 (2010).

    Article  PubMed  Google Scholar 

  131. Kalogeropoulos, A. P., Georgiopoulou, V. V., Gheorghiade, M. & Butler, J. Echocardiographic evaluation of left ventricular structure and function: new modalities and potential applications in clinical trials. J. Card. Fail. 18, 159–172 (2012).

    Article  PubMed  Google Scholar 

  132. Gayat, E., Ahmad, H., Weinert, L., Lang, R. M. & Mor-Avi, V. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J. Am. Soc. Echocardiogr. 24, 878–885 (2011).

    Article  PubMed  Google Scholar 

  133. Lang, R. M. et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 25, 3–46 (2012).

    Article  PubMed  Google Scholar 

  134. Champion, H. C., Michelakis, E. D. & Hassoun, P. M. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120, 992–1007 (2009).

    Article  PubMed  Google Scholar 

  135. Apitz, C., Webb, G. D. & Redington, A. N. Tetralogy of Fallot. Lancet 374, 1462–1471 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Warnes, C. A. Adult congenital heart disease importance of the right ventricle. J. Am. Coll. Cardiol. 54, 1903–1910 (2009).

    Article  PubMed  Google Scholar 

  137. Sahn, D. J. et al. Simultaneously derived circumferential and longitudinal right ventricular strains from 4D ultrasound using a new method for 4D cardiac mechanics: validation by sonomicrometry [poster 1165–219]. J. Am. Coll. Cardiol. 57, E856 (2011).

    Article  Google Scholar 

  138. Ishizu, T. et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur. J. Echocardiogr. 11, 377–385 (2010).

    Article  PubMed  Google Scholar 

  139. Zhang, Q. et al. A novel multi-layer approach of measuring myocardial strain and torsion by 2D speckle tracking imaging in normal subjects and patients with heart diseases. Int. J. Cardiol. 147, 32–37 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Y.-F. Cheung has received research support from Toshiba Medical Systems Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, Yf. The role of 3D wall motion tracking in heart failure. Nat Rev Cardiol 9, 644–657 (2012). https://doi.org/10.1038/nrcardio.2012.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing