Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peripheral artery disease. Part 1: clinical evaluation and noninvasive diagnosis

Abstract

Peripheral artery disease (PAD) is a marker of systemic atherosclerosis. Most patients with PAD also have concomitant coronary artery disease (CAD), and a large burden of morbidity and mortality in patients with PAD is related to myocardial infarction, ischemic stroke, and cardiovascular death. PAD patients without clinical evidence of CAD have the same relative risk of death from cardiac or cerebrovascular causes as those diagnosed with prior CAD, consistent with the systemic nature of the disease. The same risk factors that contribute to CAD and cerebrovascular disease also lead to the development of PAD. Because of the high prevalence of asymptomatic disease and because only a small percentage of PAD patients present with classic claudication, PAD is frequently underdiagnosed and thus undertreated. Health care providers may have difficulty differentiating PAD from other diseases affecting the limb, such as arthritis, spinal stenosis or venous disease. In Part 1 of this Review, we explain the epidemiology of and risk factors for PAD, and discuss the clinical presentation and diagnostic evaluation of patients with this condition.

Key Points

  • Most patients with peripheral artery disease (PAD) also have concomitant coronary artery disease; morbidity and mortality in patients with PAD are often related to myocardial infarction and ischemic stroke

  • Risk factors for coronary artery and extracranial cerebrovascular disease also promote the development of PAD; smoking and diabetes mellitus are particularly prevalent among patients with PAD

  • Only a small percentage of patients with PAD present with classic Rose claudication, as approximately 70–90% have atypical leg symptoms or are asymptomatic

  • The ankle–brachial index remains the initial noninvasive diagnostic tool of choice for PAD screening, with 95% sensitivity and 99% specificity

  • Segmental limb pressures, pulse–volume recordings, and exercise treadmill testing can help localize the diseased arterial segment(s), and provide information about the functional limitations of the patient

  • Duplex ultrasound can identify the site, extent, and severity of PAD from the aorta to the feet

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical presentation, natural history, and outcomes in patients with atherosclerotic PAD.
Figure 2: Risk factors for the development of peripheral artery disease.
Figure 3: Diagnostic algorithm for the patient with suspected PAD.
Figure 4: Measuring the ankle–brachial index using a hand-held continuous wave Doppler device.
Figure 5: Segmental blood pressure, ABI, and PVRs at rest and after exercise.
Figure 6: Duplex ultrasonography of a left superficial femoral artery after stent implantation.
Figure 7: CTA of a patient with PAD.
Figure 8: 3 Tesla gadolinium-enhanced MRA of a patient with PAD.

Similar content being viewed by others

References

  1. Hirsch, A. T. et al. ACC/AHA 2005 Practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA task force on practice guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; Transatlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113, e463–e654 (2006).

    Article  PubMed  Google Scholar 

  2. Newman, A. B. et al. Ankle-arm index as a predictor of cardiovascular disease and mortality in the Cardiovascular Health Study. The Cardiovascular Health Study Group. Arterioscler. Thromb. Vasc. Biol. 19, 538–545 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hertzer, N. R. et al. Coronary artery disease in peripheral vascular patients. A classification of 1000 coronary angiograms and results of surgical management. Ann. Surg. 199, 223–233 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirsch, A. T. et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286, 1317–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Ruo, B. et al. Persistent depressive symptoms and functional decline among patients with peripheral arterial disease. Psychosom. Med. 69, 415–424 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. McDermott, M. M. et al. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA 292, 453–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. McDermott, M. M. et al. Decline in functional performance predicts later increased mobility loss and mortality in peripheral arterial disease. J. Am. Coll. Cardiol. 57, 962–970 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hirsch, A. T., Gloviczki, P., Drooz, A., Lovell, M. & Creager, M. A. Mandate for creation of a national peripheral arterial disease public awareness program: an opportunity to improve cardiovascular health. J. Vasc. Surg. 39, 474–481 (2004).

    Article  PubMed  Google Scholar 

  9. Baber, U. et al. Combined role of reduced estimated glomerular filtration rate and microalbuminuria on the prevalence of peripheral arterial disease. Am. J. Cardiol. 104, 1446–1451 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Melamed, M. L. et al. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arterioscler. Thromb. Vasc. Biol. 28, 1179–1185 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, D. H., Sabour, S., Sagar, U. N., Adams, S. & Whellan, D. J. Prevalence of hypovitaminosis D in cardiovascular diseases (from the National Health and Nutrition Examination Survey 2001 to 2004). Am. J. Cardiol. 102, 1540–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Fung, E. T. et al. A biomarker panel for peripheral arterial disease. Vasc. Med. 13, 217–224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wilson, A. M. et al. β2-microglobulin as a biomarker in peripheral arterial disease: proteomic profiling and clinical studies. Circulation 116, 1396–1403 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Weinberg, M. D., Lau, J. F., Rosenfield, K. & Olin J. W. Peripheral artery disease. Part 2: medical and endovascular treatment. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2011.81.

    Article  CAS  PubMed  Google Scholar 

  15. Belch, J. J. et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch. Intern. Med. 163, 884–892 (2003).

    Article  PubMed  Google Scholar 

  16. Criqui, M. H. et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N. Engl. J. Med. 326, 381–386 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. McDermott, M. M. et al. Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment. JAMA 286, 1599–1606 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Weitz, J. I. et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation 94, 3026–3049 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. O'Hare, A. M., Glidden, D. V., Fox, C. S. & Hsu, C. Y. High prevalence of peripheral arterial disease in persons with renal insufficiency: results from the National Health and Nutrition Examination Survey 1999–2000. Circulation 109, 320–323 (2004).

    Article  PubMed  Google Scholar 

  20. McDermott, M. M. et al. Asymptomatic peripheral arterial disease is associated with more adverse lower extremity characteristics than intermittent claudication. Circulation 117, 2484–2491 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. McDermott, M. M. et al. Prognostic value of functional performance for mortality in patients with peripheral artery disease. J. Am. Coll. Cardiol. 51, 1482–1489 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Heald, C. L., Fowkes, F. G., Murray, G. D. & Price, J. F. Risk of mortality and cardiovascular disease associated with the ankle-brachial index: systematic review. Atherosclerosis 189, 61–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Doobay, A. V. & Anand, S. S. Sensitivity and specificity of the ankle-brachial index to predict future cardiovascular outcomes: a systematic review. Arterioscler. Thromb. Vasc. Biol. 25, 1463–1469 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Resnick, H. E. et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: the Strong Heart Study. Circulation 109, 733–739 (2004).

    Article  PubMed  Google Scholar 

  25. Diehm, C. et al. High prevalence of peripheral arterial disease and co-morbidity in 6,880 primary care patients: cross-sectional study. Atherosclerosis 172, 95–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Diehm, C. et al. Association of low ankle brachial index with high mortality in primary care. Eur. Heart J. 27, 1743–1749 (2006).

    Article  PubMed  Google Scholar 

  27. McDermott, M. M., Feinglass, J., Slavensky, R. & Pearce, W. H. The ankle-brachial index as a predictor of survival in patients with peripheral vascular disease. J. Gen. Intern. Med. 9, 445–449 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Thatipelli, M. R. et al. Prognostic value of ankle-brachial index and dobutamine stress echocardiography for cardiovascular morbidity and all-cause mortality in patients with peripheral arterial disease. J. Vasc. Surg. 46, 62–70 (2007).

    Article  PubMed  Google Scholar 

  29. McKenna, M., Wolfson, S. & Kuller, L. The ratio of ankle and arm arterial pressure as an independent predictor of mortality. Atherosclerosis 87, 119–128 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Fowkes, F. G. et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA 300, 197–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. O'Hare, A. M., Katz, R., Shlipak, M. G., Cushman, M. & Newman, A. B. Mortality and cardiovascular risk across the ankle-arm index spectrum: results from the Cardiovascular Health Study. Circulation 113, 388–393 (2006).

    Article  PubMed  Google Scholar 

  32. Shlipak, M. G. et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann. Intern. Med. 145, 237–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Bonham, P. A. Photo guide: determining the toe brachial pressure index. Nursing 33, 54–55 (2003).

    Article  PubMed  Google Scholar 

  34. Cooke, J. P. & Wilson, A. M. Biomarkers of peripheral arterial disease. J. Am. Coll. Cardiol. 55, 2017–2023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shlipak, M. G. et al. Cystatin C and the risk of death and cardiovascular events among elderly persons. N. Engl. J. Med. 352, 2049–2060 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Murabito, J. M., D'Agostino, R. B., Silbershatz, H. & Wilson, W. F. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation 96, 44–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Selvin, E. & Erlinger, T. P. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000 Circulation 110, 738–743 (2004).

    Article  PubMed  Google Scholar 

  38. Wattanakit, K. et al. Risk factors for peripheral arterial disease incidence in persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 180, 389–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Newman, A. B. et al. Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 88, 837–845 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Dormandy, J. A. & Rutherford, R. B. Management of peripheral arterial disease (PAD). TASC Working Group. Transatlantic Inter-Society Consensus (TASC). J. Vasc. Surg. 31, S1–S296 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, S. C. Jr. et al. Atherosclerotic Vascular Disease Conference: Writing Group II: risk factors. Circulation 109, 2613–2616 (2004).

    Article  PubMed  Google Scholar 

  42. Levy, P. J. Epidemiology and pathophysiology of peripheral arterial disease. Clin. Cornerstone 4, 1–15 (2002).

    Article  PubMed  Google Scholar 

  43. Newman, A. B., Sutton-Tyrrell, K., Vogt, M. T. & Kuller, L. H. Morbidity and mortality in hypertensive adults with a low ankle/arm blood pressure index. JAMA 270, 487–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Ix, J. H., Allison, M. A., Denenberg, J. O., Cushman, M. & Criqui, M. H. Novel cardiovascular risk factors do not completely explain the higher prevalence of peripheral arterial disease among African Americans. The San Diego Population Study. J. Am. Coll. Cardiol. 51, 2347–2354 (2008).

    Article  PubMed  Google Scholar 

  45. McDermott, M. M. et al. Ankle-brachial index and subclinical cardiac and carotid disease: the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 162, 33–41 (2005).

    Article  PubMed  Google Scholar 

  46. Fowkes, F. G. et al. Smoking, lipids, glucose intolerance, and blood pressure as risk factors for peripheral atherosclerosis compared with ischemic heart disease in the Edinburgh Artery Study. Am. J. Epidemiol. 135, 331–340 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Kannel, W. B. & Shurtleff, D. The Framingham Study. Cigarettes and the development of intermittent claudication. Geriatrics 28, 61–68 (1973).

    CAS  PubMed  Google Scholar 

  48. Powell, J. T. et al. Risk factors associated with the development of peripheral arterial disease in smokers: a case-control study. Atherosclerosis 129, 41–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Price, J. F. et al. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease: Edinburgh Artery Study. Eur. Heart J. 20, 344–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Willigendael, E. M. et al. Smoking and the patency of lower extremity bypass grafts: a meta-analysis. J. Vasc. Surg. 42, 67–74 (2005).

    Article  PubMed  Google Scholar 

  51. Jonason, T. & Bergström, R. Cessation of smoking in patients with intermittent claudication. Effects on the risk of peripheral vascular complications, myocardial infarction and mortality. Acta Med. Scand. 221, 253–260 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Pande, R. L., Perlstein, T. S., Beckman, J. A. & Creager, M. A. Association of insulin resistance and inflammation with peripheral arterial disease: the National Health and Nutrition Examination Survey, 1999 to 2004. Circulation 118, 33–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care 26, 3333–3341 (2003).

  54. Jude, E. B., Oyibo, S. O., Chalmers, N. & Boulton, A. J. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care 24, 1433–1437 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Conrad, M. C. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation 36, 83–91 (1967).

    Article  CAS  PubMed  Google Scholar 

  56. Menzoian, J. O. et al. Symptomatology and anatomic patterns of peripheral vascular disease: differing impact of smoking and diabetes. Ann. Vasc. Surg. 3, 224–228 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Akbari, C. M. & LoGerfo, F. W. Diabetes and peripheral vascular disease. J. Vasc. Surg. 30, 373–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Most, R. S. & Sinnock, P. The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care 6, 87–91 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Bild, D. E. et al. Lower-extremity amputation in people with diabetes. Epidemiology and prevention. Diabetes Care 12, 24–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Executive summary of the third report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285, 2486–2497 (2001).

  61. Grundy, S. M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110, 227–239 (2004).

    Article  PubMed  Google Scholar 

  62. Olin, J. W. & Sealove, B. A. Peripheral artery disease: current insight into the disease and its diagnosis and management. Mayo Clin. Proc. 85, 678–692 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Steg, P. G. et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA 297, 1197–1206 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Chobanian, A. V. et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42, 1206–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Newman, A. B., Tyrrell, K. S. & Kuller, L. H. Mortality over four years in SHEP participants with a low ankle-arm index. J. Am. Geriatr. Soc. 45, 1472–1478 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Shlipak, M. G. et al. Cardiovascular disease risk status in elderly persons with renal insufficiency. Kidney Int. 62, 997–1004 (2002).

    Article  PubMed  Google Scholar 

  67. Wattanakit, K. et al. Kidney function and risk of peripheral arterial disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. J. Am. Soc. Nephrol. 18, 629–636 (2007).

    Article  PubMed  Google Scholar 

  68. O'Hare, A. M. Management of peripheral arterial disease in chronic kidney disease. Cardiol. Clin. 23, 225–236 (2005).

    Article  PubMed  Google Scholar 

  69. Ix, J. H. & Criqui, M. H. Epidemiology and diagnosis of peripheral arterial disease in patients with chronic kidney disease. Adv. Chronic Kidney Dis. 15, 378–383 (2008).

    Article  PubMed  Google Scholar 

  70. Reddy Vanga, S., Good, M., Howard, P. A. & Vacek, J. L. Role of vitamin D in cardiovascular health. Am. J. Cardiol. 106, 798–805 (2010).

    Article  PubMed  CAS  Google Scholar 

  71. Lee, J. H., O'Keefe, J. H., Bell, D., Hensrud, D. D. & Holick, M. F. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J. Am. Coll. Cardiol. 52, 1949–1956 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Reis, J. P., Michos, E. D., von Muhlen, D. & Miller, E. R. 3rd. Differences in vitamin D status as a possible contributor to the racial disparity in peripheral arterial disease. Am. J. Clin. Nutr. 88, 1469–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. McDermott, M. M. et al. Patterns of inflammation associated with peripheral arterial disease: the InCHIANTI study. Am. Heart J. 150, 276–281 (2005).

    Article  PubMed  Google Scholar 

  74. Ridker, P. M., Stampfer, M. J. & Rifai, N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285, 2481–2485 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Vidula, H. et al. Biomarkers of inflammation and thrombosis as predictors of near-term mortality in patients with peripheral arterial disease: a cohort study. Ann. Intern. Med. 148, 85–93 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 97, 425–428 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Wildman, R. P., Muntner, P., Chen, J., Sutton-Tyrrell, K. & He, J. Relation of inflammation to peripheral arterial disease in the National Health and Nutrition Examination Survey, 1999–2002 Am. J. Cardiol. 96, 1579–1583 (2005).

    Article  PubMed  Google Scholar 

  78. Welch, G. N. & Loscalzo, J. Homocysteine and atherothrombosis. N. Engl. J. Med. 338, 1042–1050 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Lange, S. et al. Excess 1-year cardiovascular risk in elderly primary care patients with a low ankle-brachial index (ABI) and high homocysteine level. Atherosclerosis 178, 351–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Murabito, J. M. et al. Cross-sectional relations of multiple inflammatory biomarkers to peripheral arterial disease: The Framingham Offspring Study. Atherosclerosis 203, 509–514 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. McDermott, M. M. et al. Associations of borderline and low normal ankle-brachial index values with functional decline at 5-year follow-up: the WALCS (Walking and Leg Circulation Study). J. Am. Coll. Cardiol. 53, 1056–1062 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Craft, L. L. et al. Physical activity during daily life and circulating biomarker levels in patients with peripheral arterial disease. Am. J. Cardiol. 102, 1263–1268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Knowles, J. W., Assimes, T. L., Li, J., Quertermous, T. & Cooke, J. P. Genetic susceptibility to peripheral arterial disease: a dark corner in vascular biology. Arterioscler. Thromb. Vasc. Biol. 27, 2068–2078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Olin, J. W. Management of patients with intermittent claudication. Int. J. Clin. Pract. 56, 687–693 (2002).

    CAS  PubMed  Google Scholar 

  85. Brueseke, T. J., Macrino, S. & Miller, J. J. Lack of lower extremity hair not a predictor for peripheral arterial disease. Arch. Dermatol. 145, 1456–1457 (2009).

    Article  PubMed  Google Scholar 

  86. Carter, S. A. Indirect systolic pressures and pulse waves in arterial occlusive diseases of the lower extremities. Circulation 37, 624–637 (1968).

    Article  CAS  PubMed  Google Scholar 

  87. Carter, S. A. Clinical measurement of systolic pressures in limbs with arterial occlusive disease. JAMA 207, 1869–1874 (1969).

    Article  CAS  PubMed  Google Scholar 

  88. Yao, S. T. Hemodynamic studies in peripheral arterial disease. Br. J. Surg. 57, 761–766 (1970).

    Article  CAS  PubMed  Google Scholar 

  89. Strandness, D. E. Jr, Schultz, R. D., Sumner, D. S. & Rushmer, R. F. Ultrasonic flow detection. A useful technic in the evaluation of peripheral vascular disease. Am. J. Surg. 113, 311–320 (1967).

    Article  PubMed  Google Scholar 

  90. Wütschert, R. & Bounameaux, H. Predicting healing of arterial leg ulcers by means of segmental systolic pressure measurements. Vasa 27, 224–228 (1998).

    PubMed  Google Scholar 

  91. Hafner, J. et al. Leg ulcers in peripheral arterial disease (arterial leg ulcers): impaired wound healing above the threshold of chronic critical limb ischemia. J. Am. Acad. Dermatol. 43, 1001–1008 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Wolf, E. A. Jr, Sumner, D. S. & Strandness, D. E. Jr. Correlation between nutritive blood flow and pressure in limbs of patients with intermittent claudication. Surg. Forum 23, 238–239 (1972).

    PubMed  Google Scholar 

  93. Darling, R. C., Raines, J. K., Brener, B. J. & Austen, W. G. Quantitative segmental pulse volume recorder: a clinical tool. Surgery 72, 873–877 (1972).

    CAS  PubMed  Google Scholar 

  94. Macdonald, N. Pulse volume plethysmography. J. Vasc. Tech. 18, 241–248 (1994).

    Google Scholar 

  95. Moneta, G. L. et al. Accuracy of lower extremity arterial duplex mapping. J. Vasc. Surg. 15, 275–283 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Grønholdt, M. L. B-mode ultrasound and spiral CT for the assessment of carotid atherosclerosis. Neuroimaging Clin. N. Am. 12, 421–435 (2002).

    Article  PubMed  Google Scholar 

  97. Tang, R., Mercuri, M. & Bond, M. G. B-mode ultrasound imaging for detecting and monitoring peripheral atherosclerosis. Am. J. Card. Imaging 6, 333–339 (1992).

    CAS  PubMed  Google Scholar 

  98. Hatsukami, T. S., Primozich, J. F., Zierler, R. E., Harley, J. D. & Strandness, D. E. Jr. Color Doppler imaging of infrainguinal arterial occlusive disease. J. Vasc. Surg. 16, 527–531 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Ligush, J. Jr, Reavis, S. W., Preisser, J. S. & Hansen, K. J. Duplex ultrasound scanning defines operative strategies for patients with limb-threatening ischemia. J. Vasc. Surg. 28, 482–490 (1998).

    Article  PubMed  Google Scholar 

  100. Schernthaner, R. et al. Multidetector CT angiography in the assessment of peripheral arterial occlusive disease: accuracy in detecting the severity, number, and length of stenoses. Eur. Radiol. 18, 665–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Laswed, T. et al. Assessment of occlusive arterial disease of abdominal aorta and lower extremities arteries: value of multidetector CT angiography using an adaptive acquisition method. Eur. Radiol. 18, 263–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Met, R., Bipat, S., Legemate, D. A., Reekers, J. A. & Koelemay, M. J. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA 301, 415–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. von Ziegler, F. & Costa, M. A. The role of CT and MRI in the assessment of peripheral vascular disease. Curr. Cardiol. Rep. 9, 412–419 (2007).

    Article  PubMed  Google Scholar 

  104. Keeling, A., Farrelly, C., Carr, J. & Yaghmai, V. Technical considerations for lower limb multi-detector computed tomographic angiography. Vasc. Med. doi:10.1177/1358863X10388347.

    Article  PubMed  Google Scholar 

  105. Martin, M. L. et al. Multidetector CT angiography of the aortoiliac system and lower extremities: a prospective comparison with digital subtraction angiography. AJR Am. J. Roentgenol. 180, 1085–1091 (2003).

    Article  PubMed  Google Scholar 

  106. Catalano, C. et al. Infrarenal aortic and lower-extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology 231, 555–563 (2004).

    Article  PubMed  Google Scholar 

  107. Willmann, J. K. et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 236, 1083–1093 (2005).

    Article  PubMed  Google Scholar 

  108. Brockmann, C. et al. Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc. Intervent. Radiol. 32, 630–637 (2009).

    Article  PubMed  Google Scholar 

  109. Meyer, B. C. et al. Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur. J. Radiol. 68, 414–422 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Leiner, T. Magnetic resonance angiography of abdominal and lower extremity vasculature. Top. Magn. Reson. Imaging 16, 21–66 (2005).

    Article  PubMed  Google Scholar 

  111. Collins, R. et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ 334, 1257 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kramer, H., Nikolaou, K., Sommer, W., Reiser, M. F. & Herrmann, K. A. Peripheral MR angiography. Magn. Reson. Imaging Clin. N. Am. 17, 91–100 (2009).

    Article  PubMed  Google Scholar 

  113. Huber, A. et al. Moving-table MR angiography of the peripheral runoff vessels: comparison of body coil and dedicated phased array coil systems. AJR Am. J. Roentgenol. 180, 1365–1373 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Kribben, A. et al. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J. Am. Coll. Cardiol. 53, 1621–1628 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Perazella, M. A. Current status of gadolinium toxicity in patients with kidney disease. Clin. J. Am. Soc. Nephrol. 4, 461–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Prince, M. R. et al. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 248, 807–816 (2008).

    Article  PubMed  Google Scholar 

  117. Olin, J. W. in Noninvasive cardiovascular imaging: a multimodality approach 1st edn (ed. Garcia, M. J.), 252–268 (Lippincott Williams & Wilkins, Philadelphia, 2010).

    Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

J. F. Lau researched the data, J. F. Lau and J. W. Olin wrote the article, and all authors contributed substantially to the discussion of content, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Jeffrey W. Olin.

Ethics declarations

Competing interests

J. W. Olin declares associations with the following companies: Bristol-Myers Squibb, Genzyme, Merck & Co., and Sanofi–Aventis. See the article online for full details of the relationships. J. F. Lau, M. D. Weinberg, the journal Chief Editor B. Mearns and CME questions author C. P. Vega declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, J., Weinberg, M. & Olin, J. Peripheral artery disease. Part 1: clinical evaluation and noninvasive diagnosis. Nat Rev Cardiol 8, 405–418 (2011). https://doi.org/10.1038/nrcardio.2011.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing