Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical utility of exercise training in chronic systolic heart failure

Abstract

The volume of literature attesting to the clinical benefits of exercise training in patients with stable chronic heart failure (CHF) is substantial. Training can improve symptoms and exercise capacity, as well as reducing morbidity, mortality, and rates of emergency hospitalization. These benefits are apparent in all patients with stable CHF, irrespective of age or sex, or the etiology or severity of heart failure. Training regimens for patients with stable, systolic CHF should form part of a comprehensive heart-failure support effort and are best delivered using supervised in-hospital exercise combined with some training at home or in a group setting in community centers. In this Review, the modes and intensity of exercise training, selection of patients, duration of training effects, and other clinical guidance for using this treatment option are discussed.

Key Points

  • Exercise training in patients with heart failure has been the subject of more than 100 studies since 1990

  • Several systematic meta-analyses and systematic review have confirmed that training can improve exercise capacity by 15–20% in patients with heart failure

  • Multiple randomized controlled trials have shown that exercise training improves quality of life in patients with heart failure and strongly suggest benefits in terms of major clinical outcomes

  • Long-term aerobic exercise training at ≥40% of maximal capacity either at home or in hospital, combined with resistance training, is recommended for all patients with stable systolic heart failure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kaplan–Meier curves for patients with stable chronic heart failure undergoing exercise training versus controls.
Figure 2: Schemes of the steep ramp test and of interval exercise training used by Meyer and colleagues.
Figure 3: Subgroups for the effect of training on hospitalization-free survival in patients with chronic heart failure.

Similar content being viewed by others

References

  1. Dickstein, K. et al. ESC Committee for Practice Guidelines (CPG). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. J. Heart Fail. 10, 933–989 (2008).

    PubMed  Google Scholar 

  2. Duscha, B. D., Schulze, P. C., Robbins, J. L. & Forman, D. E. Implications of chronic heart failure on peripheral vasculature and skeletal muscle before and after exercise training. Heart Fail. Rev. 13, 21–37 (2008).

    PubMed  Google Scholar 

  3. Crimi, E., Ignarro, L. J., Cacciatore, F. & Napoli, C. Mechanisms by which exercise training benefits patients with heart failure. Nat. Rev. Cardiol. 6, 292–300 (2009).

    PubMed  Google Scholar 

  4. Kellermann, J. J. The role of exercise therapy in patients with impaired ventricular function and chronic heart failure. J. Cardiovasc. Pharmacol. 10 (Suppl. 6), S172–S177 (1987).

    PubMed  Google Scholar 

  5. Wenger, N. K. Left ventricular dysfunction, exercise capacity and activity recommendations. Eur. Heart J. 9 (Suppl. F), 63–66 (1988).

    PubMed  Google Scholar 

  6. Sullivan, M. J., Higginbotham, M. B. & Cobb, F. R. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation 78, 506–515 (1988).

    CAS  PubMed  Google Scholar 

  7. Sullivan, M. J., Higginbotham, M. B. & Cobb, F. R. Exercise training in patients with chronic heart failure delays ventilatory anaerobic threshold and improves submaximal exercise performance. Circulation 79, 324–329 (1989).

    CAS  PubMed  Google Scholar 

  8. Sullivan, M. J. & Cobb, F. R. The anaerobic threshold in chronic heart failure. Relation to blood lactate, ventilatory basis, reproducibility, and response to exercise training. Circulation 81 (1 Suppl. II), II47–II58 (1990).

    CAS  PubMed  Google Scholar 

  9. Coats, A. J., Adamopoulos, S., Meyer, T. E., Conway, J. & Sleight, P. Effects of physical training in chronic heart failure. Lancet 335, 63–66 (1990).

    CAS  PubMed  Google Scholar 

  10. Davey, P. et al. Ventilation in chronic heart failure: effects of physical training. Br. Heart J. 68, 473–477 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Piepoli, M. et al. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93, 940–952 (1996).

    CAS  PubMed  Google Scholar 

  12. Clark, A. L. Origin of symptoms in chronic heart failure. Heart 92, 12–16 (2006).

    CAS  PubMed  Google Scholar 

  13. Meyer, K. et al. Effects of short-term exercise training and activity restriction on functional capacity in patients with severe chronic congestive heart failure. Am. J. Cardiol. 78, 1017–1022 (1996).

    CAS  PubMed  Google Scholar 

  14. Corvera-Tindel, T., Doering, L. V., Woo, M. A., Khan, S. & Dracup, K. Effects of a home walking exercise program on functional status and symptoms in heart failure. Am. Heart J. 147, 339–346 (2004).

    PubMed  Google Scholar 

  15. Guazzi, M., Reina, G., Tumminello, G. & Guazzi, M. D. Improvement of alveolar-capillary membrane diffusing capacity with exercise training in chronic heart failure. J. Appl. Physiol. 97, 1866–1873 (2004).

    PubMed  Google Scholar 

  16. Myers, J. et al. Effects of exercise training on left ventricular volumes and function in patients with nonischemic cardiomyopathy: application of magnetic resonance myocardial tagging. Am. Heart J. 144, 719–725 (2002).

    PubMed  Google Scholar 

  17. Giannuzzi, P., Temporelli, P. L., Corrà, U. & Tavazzi, L. for the ELVD-CHF Study Group. Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) trial. Circulation 108, 554–559 (2003).

    PubMed  Google Scholar 

  18. Erbs, S. et al. Exercise training in patients with severe chronic heart failure: impact on left ventricular performance and cardiac size. A retrospective analysis of the Leipzig Heart Failure Training Trial. Eur. J. Cardiovasc. Prev. Rehabil. 10, 336–344 (2003).

    PubMed  Google Scholar 

  19. Stolen, K. Q. et al. Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 41, 460–467 (2003).

    CAS  PubMed  Google Scholar 

  20. Santos, J. M. et al. Effects of exercise training on myocardial blood flow reserve in patients with heart failure and left ventricular systolic dysfunction. Am. J. Cardiol. 105, 243–248 (2010).

    PubMed  Google Scholar 

  21. Adamopoulos, S. et al. Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J. Am. Coll. Cardiol. 21, 1101–1106 (1993).

    CAS  PubMed  Google Scholar 

  22. Stratton, J. R. et al. Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure. J. Appl. Physiol. 76, 1575–1582 (1994).

    CAS  PubMed  Google Scholar 

  23. Gordon, A. et al. Markedly improved skeletal muscle function with local muscle training in patients with chronic heart failure. Clin. Cardiol. 19, 568–574 (1996).

    CAS  PubMed  Google Scholar 

  24. Coats, A. J. et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85, 2119–2131 (1992).

    CAS  PubMed  Google Scholar 

  25. Braith, R. W., Welsch, M. A., Feigenbaum, M. S., Kluess, H. A. & Pepine, C. J. Neuroendocrine activation in heart failure is modified by endurance exercise training. J. Am. Coll. Cardiol. 34, 1170–1175 (1999).

    CAS  PubMed  Google Scholar 

  26. Fraga, R. et al. Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol. Eur. J. Heart Fail. 9, 630–636 (2007).

    CAS  PubMed  Google Scholar 

  27. Passino, C. et al. C-type natriuretic peptide expression in patients with chronic heart failure: effects of aerobic training. Eur. J. Cardiov. Prev. Rehabil. 15, 168–172 (2008).

    Google Scholar 

  28. Malfatto, G. et al. Recovery of cardiac autonomic responsiveness with low-intensity physical training in patients with chronic heart failure. Eur. J. Heart Fail. 4, 159–166 (2002).

    PubMed  Google Scholar 

  29. Pietilä, M. et al. Exercise training in chronic heart failure: beneficial effects on cardiac (11)C-hydroxyephedrine PET, autonomic nervous control, and ventricular repolarization. J. Nucl. Med. 43, 773–779 (2002).

    PubMed  Google Scholar 

  30. Tomita, T. et al. Attenuation of hypercapnic carbon dioxide chemosensitivity after postinfarction exercise training: possible contribution to the improvement in exercise hyperventilation. Heart 89, 404–410 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bjørnstad, H. H. et al. Exercise training decreases plasma levels of soluble CD40 ligand and P-selectin in patients with chronic heart failure. Eur. J. Cardiovasc. Prev. Rehabil. 15, 43–48 (2008).

    PubMed  Google Scholar 

  32. Van Berendoncks, A. M. et al. Exercise training reduces circulating adiponectin levels in patients with chronic heart failure. Clin. Sci. (Lond.) 118, 281–289 (2010).

    CAS  Google Scholar 

  33. Gielen, S. et al. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J. Am. Coll. Cardiol. 42, 861–868 (2003).

    CAS  PubMed  Google Scholar 

  34. Gielen, S. et al. Exercise training in chronic heart failure: correlation between reduced local inflammation and improved oxidative capacity in the skeletal muscle. Eur. J. Cardiovasc. Prev. Rehabil. 12, 393–400 (2005).

    PubMed  Google Scholar 

  35. Hambrecht, R. et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98, 2709–2715 (1998).

    CAS  PubMed  Google Scholar 

  36. Gerovasili, V. et al. Physical exercise improves the peripheral microcirculation of patients with chronic heart failure. J. Cardiopulm. Rehabil. Prev. 29, 385–391 (2009).

    PubMed  Google Scholar 

  37. Maiorana, A. J. et al. The impact of exercise training on conduit artery wall thickness and remodeling in chronic heart failure patients. Hypertension 57, 56–62 (2011).

    CAS  PubMed  Google Scholar 

  38. Erbs, S. et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ. Heart Fail. 3, 486–494 (2010).

    PubMed  Google Scholar 

  39. Kostis, J. B., Rosen, R. C., Cosgrove, N. M., Shindler, D. M. & Wilson, A. C. Nonpharmacologic therapy improves functional and emotional status in congestive heart failure. Chest 106, 996–1001 (1994).

    CAS  PubMed  Google Scholar 

  40. Wielenga, R. P. et al. Effect of exercise training on quality of life in patients with chronic heart failure. J. Psychosom. Res. 45, 459–464 (1998).

    CAS  PubMed  Google Scholar 

  41. Koukouvou, G. et al. Quality of life, psychological and physiological changes following exercise training in patients with chronic heart failure. J. Rehabil. Med. 36, 36–41 (2004).

    PubMed  Google Scholar 

  42. Freimark, D. et al. Improved exercise tolerance and cardiac function in severe chronic heart failure patients undergoing a supervised exercise program. Int. J. Cardiol. 116, 309–314 (2007).

    PubMed  Google Scholar 

  43. Kulcu, D. G., Kurtais, Y., Tur, B. S., Gülec, S. & Seckin, B. The effect of cardiac rehabilitation on quality of life, anxiety and depression in patients with congestive heart failure. A randomized controlled trial, short-term results. Europa Medicophys. 43, 489–497 (2007).

    CAS  Google Scholar 

  44. Brubaker, P. H., Moore, J. B., Stewart, K. P., Wesley, D. J. & Kitzman, D. W. Endurance exercise training in older patients with heart failure: results from a randomized, controlled, single-blind trial. J. Am. Ger. Soc. 57, 1982–1989 (2009).

    Google Scholar 

  45. Prescott, E., Hjardem-Hansen, R., Dela, F., Teisner, A. S. & Nielsen, H. Exercise training in older patients with systolic heart failure: adherence, exercise capacity, inflammation and glycemic control. Scand. Cardiovasc. J. 43, 249–255 (2009).

    PubMed  Google Scholar 

  46. Belardinelli, R., Georgiou, D., Cianci, G. & Purcaro, A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 99, 1173–1182 (1999).

    CAS  PubMed  Google Scholar 

  47. Hambrecht, R. et al. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA 283, 3095–3101 (2000).

    CAS  PubMed  Google Scholar 

  48. McKelvie, R. S. et al. Effects of exercise training in patients with heart failure: the Exercise Rehabilitation Trial (EXERT). Am. Heart J. 144, 23–30 (2002).

    PubMed  Google Scholar 

  49. Smart, N., Haluska, B., Jeffriess, L. & Marwick, T. H. Predictors of a sustained response to exercise training in patients with chronic heart failure: a telemonitoring study. Am. Heart J. 150, 1240–1247 (2005).

    PubMed  Google Scholar 

  50. Austin, J., Williams, R., Ross, L., Moseley, L. & Hutchison, S. Randomised controlled trial of cardiac rehabilitation in elderly patients with heart failure. Eur. J. Heart Fail. 7, 411–417 (2005).

    PubMed  Google Scholar 

  51. Dracup, K. et al. Effects of a home-based exercise program on clinical outcomes in heart failure. Am. Heart J. 154, 877–883 (2007).

    PubMed  Google Scholar 

  52. Jolly, K. et al. A randomized trial of the addition of home-based exercise to specialist heart failure nurse care: the Birmingham Rehabilitation Uptake Maximisation study for patients with Congestive Heart Failure (BRUM-CHF) study. Eur. J. Heart Fail. 11, 205–213 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Piepoli, M. F., Davos, C., Francis, D. P. & Coats, A. J. for the ExTraMATCH Collaborative. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328, 189–192 (2004).

    CAS  PubMed  Google Scholar 

  54. Smart, N. & Marwick, T. H. Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am. J. Med. 116, 693–706 (2004).

    PubMed  Google Scholar 

  55. Smart, N. & Marwick, T. H. Exercise training programmes improve survival and delay hospital admission in people with chronic heart failure. Evid. Base. Healthc. Publ. Health 8, 200–201 (2004).

    Google Scholar 

  56. Davies, E. J. et al. Exercise training for systolic heart failure: Cochrane systematic review and meta-analysis. Eur. J. Heart Fail. 12, 706–715 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. O'Connor, C. M. et al. for the HF-ACTION Investigators. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301, 1439–1450 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Flynn, K. E. et al. for the HF-ACTION Investigators. Effects of exercise training on health status in patients with chronic heart failure HF-ACTION randomized controlled trial. JAMA 301, 1451–1459 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reed, S. D. et al. Economic evaluation of the HF-ACTION (Heart failure: A controlled trial investigating outcomes of exercise training) randomized controlled trial: an exercise training study of patients with chronic heart failure. Circ. Cardiovasc. Qual. Outcomes 3, 374–381 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Da Silva, M. S. et al. Benefits of exercise training in the treatment of heart failure: study with a control group [Portuguese]. Arq. Bras. Cardiol. 79, 357–362 (2002).

    Google Scholar 

  61. Keteyian, S. J. et al. Exercise training in patients with heart failure. A randomized, controlled trial. Ann. Intern. Med. 124, 1051–1057 (1996).

    CAS  PubMed  Google Scholar 

  62. Belardinelli, R., Georgiou, D., Scocco, V., Barstow, T. J. & Purcaro, A. Low intensity exercise training in patients with chronic heart failure. J. Am. Coll. Cardiol. 26, 975–982 (1995).

    CAS  PubMed  Google Scholar 

  63. Kiilavuori, K., Sovijärvi, A., Näveri, H., Ikonen, T. & Leinonen, H. Effect of physical training on exercise capacity and gas exchange in patients with chronic heart failure. Chest 110, 985–991 (1996).

    CAS  PubMed  Google Scholar 

  64. Belardinelli, R., Capestro, F., Misiani, A., Scipione, P. & Georgiou, D. Moderate exercise training improves functional capacity, quality of life, and endothelium-dependent vasodilation in chronic heart failure patients with implantable cardioverter defibrillators and cardiac resynchronization therapy. Eur. J. Cardiovasc. Prev. Rehabil. 13, 818–825 (2006).

    PubMed  Google Scholar 

  65. Demopoulos, L. et al. Exercise training in patients with severe congestive heart failure: enhancing peak aerobic capacity while minimizing the increase in ventricular wall stress. J. Am. Coll. Cardiol. 29, 597–603 (1997).

    CAS  PubMed  Google Scholar 

  66. Scarpelli, M., Belardinelli, R., Tulli, D. & Provinciali, L. Quantitative analysis of changes occurring in muscle vastus lateralis in patients with heart failure after low-intensity training. Anal. Quant. Cytol. Histol. 21, 374–380 (1999).

    CAS  PubMed  Google Scholar 

  67. Tokmakova, M., Dobreva, B. & Kostianev, S. Effects of short-term exercise training in patients with heart failure. Folia Med. (Plovdiv) 41, 68–71 (1999).

    CAS  Google Scholar 

  68. Hambrecht, R. et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J. Am. Coll. Cardiol. 29, 1067–1073 (1997).

    CAS  PubMed  Google Scholar 

  69. Minotti, J. R. et al. Skeletal muscle response to exercise training in congestive heart failure. J. Clin. Invest. 86, 751–758 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Stratton, J. R. et al. Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure. J. Appl. Physiol. 76, 1575–1582 (1994).

    CAS  PubMed  Google Scholar 

  71. Kellermann, J. J. et al. Arm exercise training in the rehabilitation of patients with impaired ventricular function and heart failure. Cardiology 77, 130–138 (1990).

    CAS  PubMed  Google Scholar 

  72. Gordon, A. et al. Markedly improved skeletal muscle function with local muscle training in patients with chronic heart failure. Clin. Cardiol. 19, 568–574 (1996).

    CAS  PubMed  Google Scholar 

  73. Tyni-Lenné, R. et al. Aerobic training involving a minor muscle mass shows greater efficiency than training involving a major muscle mass in chronic heart failure patients. J. Card. Fail. 5, 300–307 (1999).

    PubMed  Google Scholar 

  74. Katz, S. D., Yuen, J., Bijou, R. & Lejemtel, T. H. Training improves endothelium-dependent vasodilation in resistance vessels of patients with heart failure. J. Appl. Physiol. 82, 1488–1492 (1997).

    CAS  PubMed  Google Scholar 

  75. Tyni-Lenné, R., Dencker, K., Gordon, A., Jansson, E. & Sylvén, C. Comprehensive local muscle training increases aerobic working capacity and quality of life and decreases neurohormonal activation in patients with chronic heart failure. Eur. J. Heart Fail. 3, 47–52 (2001).

    PubMed  Google Scholar 

  76. Linke, A. et al. Endothelial dysfunction in patients with chronic heart failure: systemic effects of lower-limb exercise training. J. Am. Coll. Cardiol. 37, 392–397 (2001).

    CAS  PubMed  Google Scholar 

  77. Beniaminovitz, A., Lang, C. C., LaManca, J. & Mancini, D. M. Selective low-level leg muscle training alleviates dyspnea in patients with heart failure. J. Am. Coll. Cardiol. 40, 1602–1608 (2002).

    PubMed  Google Scholar 

  78. Kobayashi, N. et al. Exercise training in patients with chronic heart failure improves endothelial function predominantly in the trained extremities. Circ. J. 67, 505–510 (2003).

    PubMed  Google Scholar 

  79. Nyquist-Battie, C. et al. Upper-extremity exercise training in heart failure. J. Cardiopulm. Rehabil. Prev. 27, 42–45 (2007).

    PubMed  Google Scholar 

  80. Meyer, K. et al. Physical responses to different modes of interval exercise in patients with chronic heart failure—application to exercise training. Eur. Heart J. 17, 1040–1047 (1996).

    CAS  PubMed  Google Scholar 

  81. Meyer, K. et al. Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med. Sci. Sports Exerc. 29, 306–312 (1997).

    CAS  PubMed  Google Scholar 

  82. Wisløff, U. et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115, 3086–3094 (2007).

    PubMed  Google Scholar 

  83. Sturm, B. et al. Moderate-intensity exercise training with elements of step aerobics in patients with severe chronic heart failure. Arch. Phys. Med. Rehabil. 80, 746–750 (1999).

    CAS  PubMed  Google Scholar 

  84. Hare, D. L. et al. Resistance exercise training increases muscle strength, endurance, and blood flow in patients with chronic heart failure. Am. J. Cardiol. 83, 1674–1677 (1999).

    CAS  PubMed  Google Scholar 

  85. Maiorana, A. et al. Combined aerobic and resistance exercise training improves functional capacity and strength in CHF. J. Appl. Physiol. 88, 1565–1570 (2000).

    CAS  PubMed  Google Scholar 

  86. Pu, C. T. et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J. Appl. Physiol. 90, 2341–2350 (2001).

    CAS  PubMed  Google Scholar 

  87. Selig, S. E. et al. Moderate-intensity resistance exercise training in patients with chronic heart failure improves strength, endurance, heart rate variability, and forearm blood flow. J. Card. Fail. 10, 21–30 (2004).

    PubMed  Google Scholar 

  88. LeMaitre, J. P., Harris, S., Hannan, J., Fox, K. A. & Denvir, M. A. Maximum oxygen uptake corrected for skeletal muscle mass accurately predicts functional improvements following exercise training in chronic heart failure. Eur. J. Heart Fail. 8, 243–248 (2006).

    PubMed  Google Scholar 

  89. Degache, F. et al. Enhancement of isokinetic muscle strength with a combined training programme in chronic heart failure. Clin. Physiol. Funct. Imaging 27, 225–230 (2007).

    PubMed  Google Scholar 

  90. Feiereisen, P., Delagardelle, C., Vaillant, M., Lasar, Y. & Beissel, J. Is strength training the more efficient training modality in chronic heart failure? Med. Sci. Sports Exerc. 39, 1910–1917 (2007).

    PubMed  Google Scholar 

  91. Beckers, P. J. et al. Combined endurance-resistance training vs endurance training in patients with chronic heart failure: a prospective randomized study. Eur. Heart J. 29, 1858–1866 (2008).

    PubMed  Google Scholar 

  92. Miche, E. et al. Combined endurance and muscle strength training in female and male patients with chronic heart failure. Clin. Res. Cardiol. 97, 615–622 (2008).

    PubMed  Google Scholar 

  93. Meyer, K. Exercise training in heart failure: recommendations based on current research. Med. Science Sports Exerc. 33, 525–531 (2001).

    CAS  Google Scholar 

  94. McConnell, T. R., Mandak, J. S., Sykes, J. S., Fesniak, H. & Dasgupta, H. Exercise training for heart failure patients improves respiratory muscle endurance, exercise tolerance, breathlessness, and quality of life. J. Cardiopulm. Rehabil. 23, 10–16 (2003).

    PubMed  Google Scholar 

  95. Oka, R. K. et al. Impact of a home-based walking and resistance training program on quality of life in patients with heart failure. Am. J. Cardiol. 85, 365–369 (2000).

    CAS  PubMed  Google Scholar 

  96. Karapolat, H. et al. Comparison of hospital-based versus home-based exercise training in patients with heart failure: effects on functional capacity, quality of life, psychological symptoms, and hemodynamic parameters. Clin. Res. Cardiol. 98, 635–642 (2009).

    PubMed  Google Scholar 

  97. Tenenbaum, A. et al. Long-term versus intermediate-term supervised exercise training in advanced heart failure: effects on exercise tolerance and mortality. Int. J. Cardiol. 113, 364–370 (2006).

    PubMed  Google Scholar 

  98. Willenheimer, R. et al. Effects on quality of life, symptoms and daily activity 6 months after termination of an exercise training programme in heart failure patients. Int. J. Cardiol. 77, 25–31 (2001).

    CAS  PubMed  Google Scholar 

  99. Prescott, E. et al. Effects of a 14-month low-cost maintenance training program in patients with chronic systolic heart failure: a randomized study. Eur. J. Cardiovasc. Prev. Rehabil. 16, 430–437 (2009).

    PubMed  Google Scholar 

  100. Nilsson, B. B., Westheim, A. & Risberg, M. A. Long-term effects of a group-based high-intensity aerobic interval-training program in patients with chronic Heart failure. Am. J. Cardiol. 102, 1220–1224 (2008).

    PubMed  Google Scholar 

  101. Witham, M. D., Daykin, A. R. & McMurdo, M. E. Pilot study of an exercise intervention suitable for older heart failure patients with left ventricular systolic dysfunction. Eur. J. Cardiovasc. Nurs. 7, 303–306 (2008).

    PubMed  Google Scholar 

  102. Belardinelli, R., Lacalaprice, F., Ventrella, C., Volpe, L. & Faccenda, E. Waltz dancing in patients with chronic heart failure: new form of exercise training. Circ. Heart Fail. 1, 107–114 (2008).

    PubMed  Google Scholar 

  103. Wilson, J. R., Groves, J. & Rayos, G. Circulatory status and response to cardiac rehabilitation in patients with heart failure. Circulation 94, 1567–1572 (1996).

    CAS  PubMed  Google Scholar 

  104. Gordon, A., Tyni-Lenné, R., Jansson, E., Jensen-Urstad, M. & Kaijser, L. Beneficial effects of exercise training in heart failure patients with low cardiac output response to exercise—a comparison of two training models. J. Intern. Med. 246, 175–182 (1999).

    CAS  PubMed  Google Scholar 

  105. Smart, N., Haluska, B., Jeffriess, L., Case, C. & Marwick, T. H. Cardiac contributions to exercise training responses in patients with chronic heart failure: a strain imaging study. Echocardiography 23, 376–382 (2006).

    PubMed  Google Scholar 

  106. European Heart Failure Training Group. Experience from controlled trials of physical training in chronic heart failure. Protocol and patient factors in effectiveness in the improvement in exercise tolerance. Eur. Heart J. 19, 466–475 (1998).

  107. Willenheimer, R., Erhardt, L., Cline, C., Rydberg, E. & Israelsson, B. Exercise training in heart failure improves quality of life and exercise capacity. Eur. Heart J. 19, 774–781 (1998).

    CAS  PubMed  Google Scholar 

  108. Webb-Peploe, K. M. et al. Different response of patients with idiopathic and ischaemic dilated cardiomyopathy to exercise training. Int. J. Cardiol. 74, 215–224 (2000).

    CAS  PubMed  Google Scholar 

  109. Tyni-Lenné, R., Gordon, A., Jansson, E., Bermann, G. & Sylvén, C. Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 80, 1025–1029 (1997).

    PubMed  Google Scholar 

  110. Tyni-Lenné, R., Gordon, A., Europe, E., Jansson, E. & Sylvén, C. Exercise-based rehabilitation improves skeletal muscle capacity, exercise tolerance, and quality of life in both women and men with chronic heart failure. J. Card. Fail. 4, 9–17 (1998).

    PubMed  Google Scholar 

  111. Keteyian, S. J. et al. Differential effects of exercise training in men and women with chronic heart failure. Am. Heart J. 145, 912–918 (2003).

    PubMed  Google Scholar 

  112. Wielenga, R. P. et al. Exercise training in elderly patients with chronic heart failure. Coron. Artery Dis. 9, 765–770 (1998).

    CAS  PubMed  Google Scholar 

  113. Gottlieb, S. S. et al. Effects of exercise training on peak performance and quality of life in congestive heart failure patients. J. Card. Fail. 5, 188–194 (1999).

    CAS  PubMed  Google Scholar 

  114. Van Den Berg-Emons, R., Balk, A., Bussmann, H. & Stam, H. Does aerobic training lead to a more active lifestyle and improved quality of life in patients with chronic heart failure? Eur. J. Heart Fail. 6, 95–100 (2004).

    PubMed  Google Scholar 

  115. Owen, A. & Croucher, L. Effect of an exercise programme for elderly patients with heart failure. Eur. J. Heart Fail. 2, 65–70 (2000).

    CAS  PubMed  Google Scholar 

  116. Belardinelli, R., Georgiou, D. & Purcaro, A. Low dose dobutamine echocardiography predicts improvement in functional capacity after exercise training in patients with ischemic cardiomyopathy: prognostic implication. J. Am. Coll. Cardiol. 31, 1027–1034 (1998).

    CAS  PubMed  Google Scholar 

  117. Meyer, K. et al. Effects of exercise training and activity restriction on 6-minute walking test performance in patients with chronic heart failure. Am. Heart J. 133, 447–453 (1997).

    CAS  PubMed  Google Scholar 

  118. Demopoulos, L. et al. Nonselective beta-adrenergic blockade with carvedilol does not hinder the benefits of exercise training in patients with congestive heart failure. Circulation 95, 1764–1767 (1997).

    CAS  PubMed  Google Scholar 

  119. Curnier, D. et al. Rehabilitation of patients with congestive heart failure with or without beta-blockade therapy. J. Card. Fail. 7, 241–248 (2001).

    CAS  PubMed  Google Scholar 

  120. Forissier, J. F., Vernochet, P., Bertrand, P., Charbonnier, B. & Monpère, C. Influence of carvedilol on the benefits of physical training in patients with moderate chronic heart failure. Eur. J. Heart Fail. 3, 335–342 (2001).

    CAS  PubMed  Google Scholar 

  121. Meyer, T. E. et al. Angiotensin-converting enzyme inhibition and physical training in heart failure. J. Intern. Med. 230, 407–413 (1991).

    CAS  PubMed  Google Scholar 

  122. Hambrecht, R. et al. Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine supplementation. J. Am. Coll. Cardiol. 35, 706–713 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coats, A. Clinical utility of exercise training in chronic systolic heart failure. Nat Rev Cardiol 8, 380–392 (2011). https://doi.org/10.1038/nrcardio.2011.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing