Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnostic and therapeutic strategies for small abdominal aortic aneurysms

Abstract

Abdominal aortic aneurysms (AAA) affect 5% of the population in developed countries and are characterized by progressive aortic dilatation with an unpredictable time course. This condition is more common in men than in women, and in smokers than in nonsmokers. If left untreated, AAA can result in aortic rupture and death. Pathologically, aortic extracellular matrix degradation, inflammation, and neovascularization are hallmarks of AAA. Diagnosis of AAA and subsequent surveillance utilize established aortic imaging methods, such as ultrasound, CT, and MRI. More-speculative diagnostic approaches include molecular and cellular imaging methods that interrogate the underlying pathological processes at work within the aneurysm. In this Review, we explore the current diagnostic and therapeutic strategies for the management of AAA. We also describe the diagnostic potential of new imaging techniques and therapeutic potential of new treatments for the management of small AAA.

Key Points

  • Abdominal aortic aneurysms (AAA) are a common and potentially lethal dilatation of the aorta

  • AAA can progress and eventually rupture if left untreated, leading to a high risk of mortality

  • The diameter of the aneurysm is currently the best predictor of rupture

  • Imaging has a major role in both secondary prevention of AAA and in planning the treatment of patients with this condition

  • Pharmacological therapies considerably extend the time from detection of AAA to consideration of repair

  • Mechanical intervention, through open surgery or endovascular repair, is the only treatment that has been shown to be effective in preventing AAA rupture

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrograph of a two-dimensional color-coded echo-Doppler ultrasound scan showing aortic dissection with the formation of an adventitial hematoma.
Figure 2: CT image of an abdominal aortic aneurysm (AAA) with eccentric mural thrombus.
Figure 3: Spontaneous ex vivo MRI image showing signal-loss from endogeneous hemosiderin in an excised human abdominal aortic aneurysm specimen.
Figure 4: Coronal sections of an abdominal aortic aneurysm.
Figure 5: Monitoring and treatment of abdominal aortic aneurysm.

Similar content being viewed by others

References

  1. Lederle, F. A. et al. The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch. Intern. Med. 160, 1425–1430 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Wilmink, T. B., Quick, C. R., Hubbard, C. S. & Day, N. E. The influence of screening on the incidence of ruptured abdominal aortic aneurysms. J. Vasc Surg. 30, 203–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hellenthal, F. A., Buurman, W. A., Wodzig, W. K. & Schurink, G. W. Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat. Rev. Cardiol. 6, 464–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hellenthal, F. A., Buurman, W. A., Wodzig, W. K. & Schurink, G. W. Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation. Nat. Rev. Cardiol. 6, 543–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Michel, J. B. Contrasting outcomes of atheroma evolution: intimal accumulation versus medial destruction. Arterioscler. Thromb. Vasc. Biol. 21, 1389–1392 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Y. et al. TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J. Clin. Invest. 120, 422–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tieu, B. C. et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J. Clin. Invest. 119, 3637–3651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gräbner, R. et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Thaunat, O. & Nicoletti, A. Lymphoid neogenesis in chronic rejection. Curr. Opin. Organ Transplant. 13, 16–19 (2008).

    Article  PubMed  Google Scholar 

  10. Folkesson, M. et al. Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb. Haemost. 98, 427–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Fontaine, V. et al. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am. J. Pathol. 164, 2077–2087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Houard, X., Ollivier, V., Louedec, L., Michel, J. B. & Bäck, M. Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J. 23, 1376–1383 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Eliason, J. L. et al. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation 112, 232–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Pagano, M. B. et al. Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms. Proc. Natl Acad. Sci. USA 104, 2855–2860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, J. et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J. Clin. Invest. 117, 3359–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Norman, P. E., Davis, T. M., Le, M. T. & Golledge, J. Matrix biology of abdominal aortic aneurysms in diabetes: mechanisms underlying the negative association. Connect. Tissue Res. 48, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Fontaine, V. et al. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am. J. Pathol. 161, 1701–1710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lederle, F. A. et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Engl. J. Med. 346, 1437–1444 (2002).

    Article  PubMed  Google Scholar 

  19. Houard, X. et al. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J. Pathol. 212, 20–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Sakalihasan, N., Limet, R. & Defawe, O. D. Abdominal aortic aneurysm. Lancet 365, 1577–1589 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Powell, J. T. & Brady, A. R. Detection, management, and prospects for the medical treatment of small abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24, 241–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Chaer, R. A., DeRubertis, B. G., Hynecek, R., Kent, K. C. & Faries, P. L. Models of abdominal aortic aneurysm: characterization and clinical applications. Vascular 14, 343–352 (2006).

    Article  PubMed  Google Scholar 

  23. Touat, Z. et al. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am. J. Pathol. 168, 1022–1030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Annambhotla, S. et al. Recent advances in molecular mechanisms of abdominal aortic aneurysm formation. World J. Surg. 32, 976–986 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pan, J. H. et al. Macrophage migration inhibitory factor is associated with aneurysmal expansion. J. Vasc Surg. 37, 628–635 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Paraskevas, K. I., Mikhailidis, D. P. & Perrea, D. Experimental models of abdominal aortic aneurysms: an overview. Curr. Pharm. Des. 14, 325–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Houard, X. et al. Mediators of neutrophil recruitment in human abdominal aortic aneurysms. Cardiovasc. Res. 82, 532–541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vega de Céniga, M. et al. Search for serum biomarkers associated with abdominal aortic aneurysm growth—a pilot study. Eur. J. Vasc. Endovasc. Surg. 37, 297–299 (2009).

    Article  PubMed  Google Scholar 

  29. Lindholt, J. S., Ashton, H. A., Heickendorff, L. & Scott, R. A. Serum elastin peptides in the preoperative evaluation of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 22, 546–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Lindholt, J. S., Heickendorff, L., Vammen, S., Fasting, H. & Henneberg, E. W. Five-year results of elastin and collagen markers as predictive tools in the management of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 21, 235–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Juvonen, J. et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 17, 2843–2847 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Treska, V., Topolcan, O. & Pecen, L. Cytokines as plasma markers of abdominal aortic aneurysm. Clin. Chem. Lab. Med. 38, 1161–1164 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Golledge, J. et al. Association between osteopontin and human abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 27, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Anidjar, S. et al. Elastase-induced experimental aneurysms in rats. Circulation 82, 973–981 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Anidjar, S., Dobrin, P. B., Eichorst, M., Graham, G. P. & Chejfec, G. Correlation of inflammatory infiltrate with the enlargement of experimental aortic aneurysms. J. Vasc. Surg. 16, 139–147 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Allaire, E., Guettier, C., Bruneval, P., Plissonnier, D. & Michel, J. B. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J. Vasc. Surg. 19, 446–456 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Martin-Ventura, J. L. et al. Proteomics in atherothrombosis: a future perspective. Expert Rev. Proteomics 4, 249–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Guerrier, L. et al. Reducing protein concentration range of biological samples using solid-phase ligand libraries. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 833, 33–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Wilmink, A. B., Hubbard, C. S. & Quick, C. R. Quality of the measurement of the infrarenal aortic diameter by ultrasound. J. Med. Screen. 4, 49–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Lindholt, J. S., Vammen, S., Juul, S., Henneberg, E. W. & Fasting, H. The validity of ultrasonographic scanning as screening method for abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 17, 472–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wilmink, A. B., Forshaw, M., Quick, C. R., Hubbard, C. S. & Day, N. E. Accuracy of serial screening for abdominal aortic aneurysms by ultrasound. J. Med. Screen. 9, 125–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Ellis, M., Powell, J. T. & Greenhalgh, R. M. Limitations of ultrasonography in surveillance of small abdominal aortic aneurysms. Br. J. Surg. 78, 614–616 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Ashton, H. A. et al. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial. Lancet 360, 1531–1539 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lindholt, J. S., Juul, S., Fasting, H. & Henneberg, E. W. Screening for abdominal aortic aneurysms: single centre randomised controlled trial. BMJ 330, 750 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ashton, H. A. et al. Fifteen-year follow-up of a randomized clinical trial of ultrasonographic screening for abdominal aortic aneurysms. Br. J. Surg. 94, 696–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Norman, P. E. et al. Population based randomised controlled trial on impact of screening on mortality from abdominal aortic aneurysm. BMJ 329, 1259 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lederle, F. A. et al. Prevalence and associations of abdominal aortic aneurysm detected through screening. Aneurysm Detection and Management (ADAM) Veterans Affairs cooperative study group. Ann. Intern. Med. 126, 441–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Scott, R. A., Wilson, N. M., Ashton, H. A. & Kay, D. N. Influence of screening on the incidence of ruptured abdominal aortic aneurysm: 5-year results of a randomized controlled study. Br. J. Surg. 82, 1066–1070 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Lindholt, J. S., Juul, S., Fasting, H. & Henneberg, E. W. Preliminary ten year results from a randomised single centre mass screening trial for abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 32, 608–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Lawrence-Brown, M. M. et al. Initial results of ultrasound screening for aneurysm of the abdominal aorta in Western Australia: relevance for endoluminal treatment of aneurysm disease. Cardiovasc. Surg. 9, 234–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Lindholt, J. S. & Norman, P. Screening for abdominal aortic aneurysm reduces overall mortality in men. A meta-analysis of the mid- and long-term effects of screening for abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 36, 167–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Schlösser, F. J. et al. Growth predictors and prognosis of small abdominal aortic aneurysms. J. Vasc. Surg. 47, 1127–1133 (2008).

    Article  PubMed  Google Scholar 

  53. Vardulaki, K. A. et al. Growth rates and risk of rupture of abdominal aortic aneurysms. Br. J. Surg. 85, 1674–1680 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Brady, A. R., Thompson, S. G., Fowkes, F. G., Greenhalgh, R. M. & Powell, J. T. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110, 16–21 (2004).

    Article  PubMed  Google Scholar 

  55. United Kingdom Small Aneurysm Trial Participants. Long-term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Engl. J. Med. 346, 1445–1452 (2002).

  56. Chang, J. B., Stein, T. A., Liu, J. P. & Dunn, M. E. Risk factors associated with rapid growth of small abdominal aortic aneurysms. Surgery 121, 117–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Reed, W. W., Hallett, J. W. Jr, Damiano, M. A. & Ballard, D. J. Learning from the last ultrasound. A population-based study of patients with abdominal aortic aneurysm. Arch. Intern. Med. 157, 2064–2068 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Hirsch, A. T., Haskal, Z. J., Hertzer, N. R., Bakal, C. W. et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113, e463–e654 (2006).

    Article  PubMed  Google Scholar 

  59. Nyhsen, C. M. & Elliott, S. T. Rapid assessment of abdominal aortic aneurysms by 3-dimensional ultrasonography. J. Ultrasound Med. 26, 223–226 (2007).

    Article  PubMed  Google Scholar 

  60. Leotta, D. F. et al. Measurement of abdominal aortic aneurysms with three-dimensional ultrasound imaging: preliminary report. J. Vasc. Surg. 33, 700–707 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Lindner, J. R. et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104, 2107–2112 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Villanueva, F. S. Molecular imaging of cardiovascular disease using ultrasound. J. Nucl. Cardiol. 15, 576–586 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sakuta, A. et al. Delayed enhancement on computed tomography in abdominal aortic aneurysm wall. Heart Vessels 22, 79–87 (2007).

    Article  PubMed  Google Scholar 

  64. Roy, J. et al. Bleeding into the intraluminal thrombus in abdominal aortic aneurysms is associated with rupture. J. Vasc. Surg. 48, 1108–1113 (2008).

    Article  PubMed  Google Scholar 

  65. Summers, R. M. et al. Evaluation of the aortic root by MRI: insights from patients with homozygous familial hypercholesterolemia. Circulation 98, 509–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Kramer, C. M. et al. Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm. Circulation 109, 1016–1021 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ludman, C. N. et al. Feasibility of using dynamic contrast-enhanced magnetic resonance angiography as the sole imaging modality prior to endovascular repair of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 19, 524–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. van Herwaarden, J. A. et al. Aortic compliance following EVAR and the influence of different endografts: determination using dynamic MRA. J. Endovasc. Ther. 13, 406–414 (2006).

    Article  PubMed  Google Scholar 

  69. van Keulen, J. W., van Prehn, J., Prokop, M., Moll, F. L. & van Herwaarden, J. A. Dynamics of the aorta before and after endovascular aneurysm repair: a systematic review. Eur. J. Vasc. Endovasc. Surg. 38, 586–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Markl, M. et al. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J. Magn. Reson. Imaging 25, 824–831 (2007).

    Article  PubMed  Google Scholar 

  71. Frydrychowicz, A. et al. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. J. Cardiovasc. Magn. Reson. 10, 30 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rudd, J. H. et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105, 2708–2711 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Sakalihasan, N. et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur. J. Vasc. Endovasc. Surg. 23, 431–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Truijers, M., Kurvers, H. A., Bredie, S. J., Oyen, W. J. & Blankensteijn, J. D. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J. Endovasc. Ther. 15, 462–467 (2008).

    Article  PubMed  Google Scholar 

  75. Xu, X. Y. et al. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur. J. Vasc. Endovasc. Surg. 39, 295–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Klink, A. et al. Magnetic resonance molecular imaging of thrombosis in an arachidonic acid mouse model using an activated platelet targeted probe. Arterioscler. Thromb. Vasc. Biol. 30, 403–410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sadat, U., Taviani, V., Patterson, A. J., Young, V. E. et al. Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging of abdominal aortic aneurysms—a feasibility study. Eur. J. Vasc. Endovasc. Surg. doi:10.1016/j.ejvs.2010.08.022.

    Article  CAS  PubMed  Google Scholar 

  78. Cormode, D. P., Skajaa, T., Fayad, Z. A. & Mulder, W. J. Nanotechnology in medical imaging: probe design and applications. Arterioscler. Thromb. Vasc. Biol. 29, 992–1000 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Wilmink, T. B., Quick, C. R. & Day, N. E. The association between cigarette smoking and abdominal aortic aneurysms. J. Vasc. Surg. 30, 1099–1105 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Steinmetz, E. F. et al. Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice. Ann. Surg. 241, 92–101 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Evans, J., Powell, J. T., Schwalbe, E., Loftus, I. M. & Thompson, M. M. Simvastatin attenuates the activity of matrix metalloprotease-9 in aneurysmal aortic tissue. Eur. J. Vasc. Endovasc. Surg. 34, 302–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Schouten, O. et al. Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. Eur. J. Vasc. Endovasc. Surg. 32, 21–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Sukhija, R., Aronow, W. S., Sandhu, R., Kakar, P. & Babu, S. Mortality and size of abdominal aortic aneurysm at long-term follow-up of patients not treated surgically and treated with and without statins. Am. J. Cardiol. 97, 279–280 (2006).

    Article  PubMed  Google Scholar 

  84. Boucek, R. J., Gunja-Smith, Z., Noble, N. L. & Simpson, C. F. Modulation by propranolol of the lysyl cross-links in aortic elastin and collagen of the aneurysm-prone turkey. Biochem. Pharmacol. 32, 275–280 (1983).

    Article  CAS  PubMed  Google Scholar 

  85. Brophy, C. M., Tilson, J. E. & Tilson, M. D. Propranolol stimulates the crosslinking of matrix components in skin from the aneurysm-prone blotchy mouse. J. Surg. Res. 46, 330–332 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Propranolol for small abdominal aortic aneurysms: results of a randomized trial. J. Vasc. Surg. 35, 72–79 (2002).

  87. Leach, S. D., Toole, A. L., Stern, H., DeNatale, R. W. & Tilson, M. D. Effect of β-adrenergic blockade on the growth rate of abdominal aortic aneurysms. Arch. Surg. 123, 606–609 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Gadowski, G. R., Pilcher, D. B. & Ricci, M. A. Abdominal aortic aneurysm expansion rate: effect of size and beta-adrenergic blockade. J. Vasc. Surg. 19, 727–731 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Inoue, N. et al. Involvement of vascular angiotensin II-forming enzymes in the progression of aortic abdominal aneurysms in angiotensin II- infused ApoE-deficient mice. J. Atheroscler. Thromb. 16, 164–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Hackam, D. G., Thiruchelvam, D. & Redelmeier, D. A. Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study. Lancet 368, 659–665 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Lederle, F. A. & Taylor, B. C. ACE inhibitors and aortic rupture. Lancet 368, 1571 (2006).

    Article  PubMed  Google Scholar 

  92. Petrinec, D. et al. Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J. Vasc. Surg. 23, 336–346 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Prall, A. K. et al. Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J. Vasc. Surg. 35, 923–929 (2002).

    Article  PubMed  Google Scholar 

  94. Baxter, B. T. et al. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study. J. Vasc. Surg. 36, 1–12 (2002).

    Article  PubMed  Google Scholar 

  95. Curci, J. A. et al. Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms. J. Vasc. Surg. 31, 325–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Golledge, J. & Powell, J. T. Medical management of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 34, 267–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Lindholt, J. S., Ashton, H. A. & Scott, R. A. Indicators of infection with Chlamydia pneumoniae are associated with expansion of abdominal aortic aneurysms. J. Vasc. Surg. 34, 212–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Vammen, S., Lindholt, J. S., Ostergaard, L., Fasting, H. & Henneberg, E. W. Randomized double-blind controlled trial of roxithromycin for prevention of abdominal aortic aneurysm expansion. Br. J. Surg. 88, 1066–1072 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Karlsson, L., Gnarpe, J., Bergqvist, D., Lindbäck, J. & Pärsson, H. The effect of azithromycin and Chlamydophilia pneumonia infection on expansion of small abdominal aortic aneurysms—a prospective randomized double-blind trial. J. Vasc. Surg. 50, 23–29 (2009).

    Article  PubMed  Google Scholar 

  100. Dai, J., Louedec, L., Philippe, M., Michel, J. B. & Houard, X. Effect of blocking platelet activation with AZD6140 on development of abdominal aortic aneurysm in a rat aneurysmal model. J. Vasc. Surg. 49, 719–727 (2009).

    Article  PubMed  Google Scholar 

  101. Malas, M. B. & Freischlag, J. A. Interpretation of the results of OVER in the context of EVAR trial, DREAM, and the EUROSTAR registry. Semin. Vasc. Surg. 23, 165–169 (2010).

    Article  PubMed  Google Scholar 

  102. Ouriel, K. The PIVOTAL study: a randomized comparison of endovascular repair versus surveillance in patients with smaller abdominal aortic aneurysms. J. Vasc. Surg. 49, 266–269 (2009).

    Article  PubMed  Google Scholar 

  103. Conrad, M. F. et al. Long-term durability of open abdominal aortic aneurysm repair. J. Vasc. Surg. 46, 669–675 (2007).

    Article  PubMed  Google Scholar 

  104. Adam, D. J., Fitridge, R. A. & Raptis, S. Late reintervention for aortic graft-related events and new aortoiliac disease after open abdominal aortic aneurysm repair in an Australian population. J. Vasc. Surg. 43, 701–705 (2006).

    Article  PubMed  Google Scholar 

  105. Vega de Céniga, M. et al. Long-term cardiovascular outcome after elective abdominal aortic aneurysm open repair. Ann. Vasc. Surg. 24, 655–662 (2010).

    Article  PubMed  Google Scholar 

  106. De Bruin, J. L. et al. Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. N. Engl. J. Med. 362, 1881–1889 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Greenhalgh, R. M., Brown, L. C., Kwong, G. P., Powell, J. T. & Thompson, S. G. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364, 843–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. United Kingdom EVAR Trial Investigators. Endovascular versus open repair of abdominal aortic aneurysm. N. Engl. J. Med. 362, 1863–1871 (2010).

  109. Yeung, J. J., Hernandez-Boussard, T. M., Song, T. K., Dalman, R. L. & Lee, J. T. Preoperative thrombus volume predicts sac regression after endovascular aneurysm repair. J. Endovasc. Ther. 16, 380–388 (2009).

    Article  PubMed  Google Scholar 

  110. The UK Small Aneurysm Trial Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352, 1649–1655 (1998).

  111. EVAR trial participants. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial. Lancet 365, 2187–2192 (2005).

  112. Ouriel, K. Randomized clinical trials of endovascular repair versus surveillance for treatment of small abdominal aortic aneurysms. J. Endovasc. Ther. 16 (Suppl. 1), I94–I105 (2009).

    PubMed  Google Scholar 

  113. Mulder, W. J. et al. Multimodality nanotracers for cardiovascular applications. Nat. Clin. Pract. Cardiovasc. Med. 5 (Suppl. 2), S103–S111 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Broz, P. et al. Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. J. Cardiovasc. Pharmacol. 51, 246–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Banciu, M., Metselaar, J. M., Schiffelers, R. M. & Storm, G. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia 10, 108–117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Deux, J. F. et al. Aortic aneurysms in a rat model: in vivo MR imaging of endovascular cell therapy. Radiology 246, 185–192 (2008).

    Article  PubMed  Google Scholar 

  117. Serruys, P. W. et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373, 897–910 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat. Med. 11, 1330–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Data for the article were researched by A. Klink. F. Hyafil, J. Rudd, Z. Mallat, O. Meilhac, J.-B. Michel, G. Storm, J. Egido, J. L. Martín-Ventura, C. Zaragoza and D. Letourneur. All authors contributed to the discussion of content. The article was written by A. Klink. F. Hyafil, J. Rudd, Z. Mallat, O. Meilhac, J.-B. Michel, G. Storm, J. Egido, J. L. Martín-Ventura, C. Zaragoza and D. Letourneur. All authors reviewed/edited the manuscript before submission and after peer-review.

Corresponding author

Correspondence to Zahi A. Fayad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klink, A., Hyafil, F., Rudd, J. et al. Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nat Rev Cardiol 8, 338–347 (2011). https://doi.org/10.1038/nrcardio.2011.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing