Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategic choices to reduce implantable cardioverter-defibrillator-related morbidity

Abstract

The indications for ICD implantation continue to expand; however, these devices are associated with complications related to the implantation procedure itself and morbidity caused by the normal and abnormal functioning of the components comprising the system. Several factors need to be considered when embarking on initiating ICD implantation. Special consideration should be given to implantation technique and choice of operator to decrease acute complications. After implantation, the device should be appropriately programmed to minimize unnecessary pacing and decrease the likelihood of inappropriate shocks. Therapy should, in most cases, be painless and can be achieved by adhering to simple programming recommendations. A well-established and efficient follow-up program, ideally incorporating remote monitoring, is very important to ensure compliance and to monitor therapy and the integrity of the various device components—particularly given the possibility of device or lead malfunction.

Key Points

  • ICD implantation should, ideally, be performed by physicians with training in clinical cardiac electrophysiology; procedures conducted by electrophysiologists are associated with the lowest rates of complication

  • Universal infection prevention techniques and prophylactic antibiotic therapy help to reduce the risk of device-related infection

  • The choice of ICD lead and implantation technique should be individualized to the patient to minimize the risk of lead failure

  • The ICD should be programmed to optimize the use of antitachycardia pacing and minimize right ventricular pacing and inappropriate therapy

  • Remote monitoring of the ICD reduces the number of follow-up clinic visits required and improves patient satisfaction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chest X-ray showing clavicular–first rib (subclavian) crush.

Similar content being viewed by others

References

  1. Epstein, A. E. et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary. Heart Rhythm 5, 934–955 (2008).

    PubMed  Google Scholar 

  2. Estes, N. A. M. III & Lindsay, B. D. for the Heart Rhythm Society. Letter detailing the current recommended training curriculum for the clinical use of cardiovascular implantable electronic devices [online], (2008).

  3. Naccarelli, G. V., Conti, J. B. & Tracy, C. M. for the Heart Rhythm Society. Task Force 6: Training in specialized electrophysiology, cardiac pacing, and arrhythmia management [online], (2008).

  4. Curtis, J. P. et al. Association of physician certification and outcomes among patients receiving an implantable cardioverter-defibrillator. JAMA 301, 1661–1670 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hammill, S., Phurrough, S. & Brindis, R. The National ICD Registry: now and into the future. Heart Rhythm 3, 470–473 (2006).

    PubMed  Google Scholar 

  6. Al-Khatib, S. M. et al. Patient and implanting physician factors associated with mortality and complications following implantable cardioverter-defibrillator implantation, 2002–2005. Circ. Arrhythm. Electrophysiol. 1, 240–249 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Aggarwal, R. K., Ramsdale, D. R. & Charles, R. G. Antibiotic prophylaxis in permanent pacemaker implantation. Br. Heart J. 73, 392 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bluhm, G., Jacobson, B. & Ransjo, U. Antibiotic prophylaxis in pacemaker surgery: a prospective trial with local or systemic administration of antibiotics at generator replacements. Pacing Clin. Electrophysiol. 8, 661–670 (1985).

    CAS  PubMed  Google Scholar 

  9. Bluhm, G., Nordlander, R. & Ransjo, U. Antibiotic prophylaxis in pacemaker surgery: a prospective double blind trial with systemic administration of antibiotic versus placebo at implantation of cardiac pacemakers. Pacing Clin. Electrophysiol. 9, 720–726 (1986).

    CAS  PubMed  Google Scholar 

  10. Da Costa, A. et al. Antibiotic prophylaxis for permanent pacemaker implantation: a meta-analysis. Circulation 97, 1796–1801 (1998).

    CAS  PubMed  Google Scholar 

  11. Gastinger, I. & Herwig, H. [Perioperative preventive use of antibiotics in cardiac pacemaker surgery]. [German] Zentralbl Chir. 113, 465–467 (1988).

    CAS  PubMed  Google Scholar 

  12. Glieca, F. et al. [The role of antibiotic prophylaxis in the implantation of pacemakers]. [Italian] Minerva Cardioangiol. 35, 549–552 (1987).

    CAS  PubMed  Google Scholar 

  13. Midtvedt, K. & Myrvang, B. [Antibiotic prevention in permanent pacemaker implantation in Norway]. [Norwegian] Tidsskr Nor Laegeforen. 111, 1106–1107 (1991).

    CAS  PubMed  Google Scholar 

  14. Morito, N. et al. Orally administered levofloxacin as prophylaxis against pacemaker infection. Exp. Clin. Cardiol. 11, 21–24 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mounsey, J. P. et al. Antibiotic prophylaxis in permanent pacemaker implantation: a prospective randomised trial. Br. Heart J. 72, 339–343 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Muers, M. F., Arnold, A. G. & Sleight, P. Prophylactic antibiotics for cardiac pacemaker implantation. A prospective trail. Br. Heart J. 46, 539–544 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramsdale, D. R. et al. Antibiotic prophylaxis for pacemaker implantation: a prospective randomized trial. Pacing Clin. Electrophysiol. 7, 844–849 (1984).

    CAS  PubMed  Google Scholar 

  18. Ucchino, S. et al. [Antibiotic prophylaxis in the implantation of permanent pacemakers]. [Italian] Minerva Med. 73, 3181–3184 (1982).

    CAS  PubMed  Google Scholar 

  19. de Oliveira, J. C. et al. Efficacy of antibiotic prophylaxis before the implantation of pacemakers and cardioverter-defibrillators: results of a large, prospective, randomized, double-blinded, placebo-controlled trial. Circ. Arrhythm. Electrophysiol. 2, 29–34 (2009).

    PubMed  Google Scholar 

  20. Chua, J. D. et al. Diagnosis and management of infections involving implantable electrophysiologic cardiac devices. Ann. Intern. Med. 133, 604–608 (2000).

    CAS  PubMed  Google Scholar 

  21. Jog, S. et al. Impact of preoperative screening for methicillin-resistant Staphylococcus aureus by real-time polymerase chain reaction in patients undergoing cardiac surgery. J. Hosp. Infect. 69, 124–130 (2008).

    CAS  PubMed  Google Scholar 

  22. Tom, T. S., Kruse, M. W. & Reichman, R. T. Update: methicillin-resistant Staphylococcus aureus screening and decolonization in cardiac surgery. Ann. Thorac. Surg. 88, 695–702 (2009).

    PubMed  Google Scholar 

  23. Trautmann, M., Stecher, J., Hemmer, W., Luz, K. & Panknin, H. T. Intranasal mupirocin prophylaxis in elective surgery. A review of published studies. Chemotherapy 54, 9–16 (2008).

    CAS  PubMed  Google Scholar 

  24. Arias, M. A., Puchol, A., Castellanos, E. & Pachon, M. The Sprint Fidelis implantable cardioverter-defibrillator (ICD) leads (Medtronic, Inc., Minneapolis, MN, USA) were removed from the market in October 2007 because of the rate of pace-sense conductor fractures. Heart Rhythm 6, e6–e7 (2009).

    PubMed  Google Scholar 

  25. Hauser, R. G. & Hayes, D. L. Increasing hazard of Sprint Fidelis implantable cardioverter-defibrillator lead failure. Heart Rhythm 6, 605–610 (2009).

    PubMed  Google Scholar 

  26. Hauser, R. G., Kallinen, L. M., Almquist, A. K., Gornick, C. C. & Katsiyiannis, W. T. Early failure of a small-diameter high-voltage implantable cardioverter-defibrillator lead. Heart Rhythm 4, 892–896 (2007).

    PubMed  Google Scholar 

  27. Danik, S. B. et al. Increased incidence of subacute lead perforation noted with one implantable cardioverter-defibrillator. Heart Rhythm 4, 439–442 (2007).

    PubMed  Google Scholar 

  28. Ellis, C. R. & Rottman, J. N. Increased rate of subacute lead complications with small-caliber implantable cardioverter-defibrillator leads. Heart Rhythm 6, 619–624 (2009).

    PubMed  Google Scholar 

  29. Farwell, D., Green, M. S., Lemery, R., Gollob, M. H. & Birnie, D. H. Accelerating risk of Fidelis lead fracture. Heart Rhythm 5, 1375–1379 (2008).

    PubMed  Google Scholar 

  30. Henrikson, C. A. The Sprint Fidelis story: where are we now? Heart Rhythm 6, 611–612 (2009).

    PubMed  Google Scholar 

  31. Kallinen, L. M. et al. Failure of impedance monitoring to prevent adverse clinical events caused by fracture of a recalled high-voltage implantable cardioverter-defibrillator lead. Heart Rhythm 5, 775–779 (2008).

    PubMed  Google Scholar 

  32. Kenigsberg, D. N. et al. Sensing failure associated with the Medtronic Sprint Fidelis defibrillator lead. J. Cardiovasc. Electrophysiol. 19, 270–274 (2008).

    PubMed  Google Scholar 

  33. Krahn, A. D. et al. Outcome of the Fidelis implantable cardioverter-defibrillator lead advisory: a report from the Canadian Heart Rhythm Society Device Advisory Committee. Heart Rhythm 5, 639–642 (2008).

    PubMed  Google Scholar 

  34. Epstein, A. E. et al. Performance of the St Jude Medical Riata leads. Heart Rhythm 6, 204–209 (2009).

    PubMed  Google Scholar 

  35. Wilkoff, B. L. Lead failures: dealing with even less perfect. Heart Rhythm 4, 897–899 (2007).

    PubMed  Google Scholar 

  36. Maisel, W. H. et al. Recommendations from the Heart Rhythm Society Task Force on Lead Performance Policies and Guidelines: developed in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart Rhythm 6, 869–885 (2009).

    PubMed  Google Scholar 

  37. Wilkoff, B. L. et al. Transvenous lead extraction: Heart Rhythm Society expert consensus on facilities, training, indications, and patient management: this document was endorsed by the American Heart Association (AHA). Heart Rhythm 6, 1085–1104 (2009).

    PubMed  Google Scholar 

  38. Gould, P. A. et al. Outcome of advisory implantable cardioverter-defibrillator replacement: one-year follow-up. Heart Rhythm 5, 1675–1681 (2008).

    PubMed  Google Scholar 

  39. Watson, W. The Medtronic Lead Integrity Alert (LIA) significantly increases the likelihood of detecting a potential defibrillation lead fracture that could result in inappropriate therapy. Heart Rhythm 6, e7 (2009).

    PubMed  Google Scholar 

  40. Magney, J. Pacemaker or defibrillator lead implantation. Pacing Clin. Electrophysiol. 19, 1400–1401 (1996).

    CAS  PubMed  Google Scholar 

  41. Magney, J. E. Anatomical mechanisms that cause lead and catheter damage. Pacing Clin. Electrophysiol. 19, 257–258 (1996).

    CAS  PubMed  Google Scholar 

  42. Roelke, M. et al. Subclavian crush syndrome complicating transvenous cardioverter defibrillator systems. Pacing Clin. Electrophysiol. 18 (5 Pt 1), 973–979 (1995).

    CAS  PubMed  Google Scholar 

  43. Belott, P. How to access the axillary vein. Heart Rhythm 3, 366–369 (2006).

    PubMed  Google Scholar 

  44. de Cock, C. C., Giudici, M. C. & Twisk, J. W. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing: a quantitative review. Europace 5, 275–278 (2003).

    CAS  PubMed  Google Scholar 

  45. Gold, M. R., Brockman, R., Peters, R. W., Olsovsky, M. R. & Shorofsky, S. R. Acute hemodynamic effects of right ventricular pacing site and pacing mode in patients with congestive heart failure secondary to either ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 85, 1106–1109 (2000).

    CAS  PubMed  Google Scholar 

  46. Tse, H. F. et al. Functional abnormalities in patients with permanent right ventricular pacing: the effect of sites of electrical stimulation. J. Am. Coll. Cardiol. 40, 1451–1458 (2002).

    PubMed  Google Scholar 

  47. Tantengco, M. V., Thomas, R. L. & Karpawich, P. P. Left ventricular dysfunction after long-term right ventricular apical pacing in the young. J. Am. Coll. Cardiol. 37, 2093–2100 (2001).

    CAS  PubMed  Google Scholar 

  48. Wilkoff, B. L. The Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial: rationale, design, results, clinical implications and lessons for future trials. Card. Electrophysiol. Rev. 7, 468–472 (2003).

    PubMed  Google Scholar 

  49. Muto, C. et al. Effect of right ventricular apical pacing in survivors of myocardial infarction. Pacing Clin. Electrophysiol. 32 (Suppl. 1), S173–S176 (2009).

    PubMed  Google Scholar 

  50. Thambo, J. B. et al. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 110, 3766–3772 (2004).

    PubMed  Google Scholar 

  51. Varma, N. Left ventricular conduction delays induced by right ventricular apical pacing: effect of left ventricular dysfunction and bundle branch block. J. Cardiovasc. Electrophysiol. 19, 114–122 (2008).

    PubMed  Google Scholar 

  52. Zhang, X. H. et al. New-onset heart failure after permanent right ventricular apical pacing in patients with acquired high-grade atrioventricular block and normal left ventricular function. J. Cardiovasc. Electrophysiol. 19, 136–141 (2008).

    PubMed  Google Scholar 

  53. Wilkoff, B. L. et al. The DAVID (Dual Chamber and VVI Implantable Defibrillator) II trial. J. Am. Coll. Cardiol. 53, 872–880 (2009).

    PubMed  Google Scholar 

  54. Delnoy, P. P. et al. Long-term clinical response of cardiac resynchronization after chronic right ventricular pacing. Am. J. Cardiol. 104, 116–121 (2009).

    PubMed  Google Scholar 

  55. Funck, R. C. et al. Biventricular stimulation to prevent cardiac desynchronization: rationale, design, and endpoints of the 'Biventricular Pacing for Atrioventricular Block to Prevent Cardiac Desynchronization (BioPace)' study. Europace 8, 629–635 (2006).

    PubMed  Google Scholar 

  56. Reynolds, D. W. & Murray, C. M. New concepts in physiologic cardiac pacing. Curr. Cardiol. Rep. 9, 351–357 (2007).

    PubMed  Google Scholar 

  57. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    PubMed  Google Scholar 

  58. Sweeney, M. O. et al. Appropriate and inappropriate ventricular therapies, quality of life, and mortality among primary and secondary prevention implantable cardioverter defibrillator patients: results from the Pacing Fast VT REduces Shock ThErapies (PainFREE Rx II) trial. Circulation 111, 2898–2905 (2005).

    CAS  PubMed  Google Scholar 

  59. Poole, J. E. et al. Prognostic importance of defibrillator shocks in patients with heart failure. N. Engl. J. Med. 359, 1009–1017 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Daubert, J. P. et al. Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: frequency, mechanisms, predictors, and survival impact. J. Am. Coll. Cardiol. 51, 1357–1365 (2008).

    PubMed  Google Scholar 

  61. Wilkoff, B. L. et al. Design of the Primary Prevention Parameters Evaluation (PREPARE) trial of implantable cardioverter defibrillators to reduce patient morbidity [NCT00279279]. Trials 7, 18 (2006).

    PubMed  PubMed Central  Google Scholar 

  62. Wilkoff, B. L. et al. Strategic programming of detection and therapy parameters in implantable cardioverter-defibrillators reduces shocks in primary prevention patients: results from the PREPARE (Primary Prevention Parameters Evaluation) study. J. Am. Coll. Cardiol. 52, 541–550 (2008).

    PubMed  Google Scholar 

  63. Wilkoff, B. L. et al. A comparison of empiric to physician-tailored programming of implantable cardioverter-defibrillators: results from the prospective randomized multicenter EMPIRIC trial. J. Am. Coll. Cardiol. 48, 330–339 (2006).

    PubMed  Google Scholar 

  64. Theuns, D. A., Rivero-Ayerza, M., Boersma, E. & Jordaens, L. Prevention of inappropriate therapy in implantable defibrillators: A meta-analysis of clinical trials comparing single-chamber and dual-chamber arrhythmia discrimination algorithms. Int. J. Cardiol. 125, 352–357 (2008).

    PubMed  Google Scholar 

  65. Theuns, D. A., Rivero-Ayerza, M., Goedhart, D. M., van der Perk, R. & Jordaens, L. J. Evaluation of morphology discrimination for ventricular tachycardia diagnosis in implantable cardioverter-defibrillators. Heart Rhythm 3, 1332–1338 (2006).

    PubMed  Google Scholar 

  66. Tzeis, S., Andrikopoulos, G., Kolb, C. & Vardas, P. E. Tools and strategies for the reduction of inappropriate implantable cardioverter defibrillator shocks. Europace 10, 1256–1265 (2008).

    PubMed  Google Scholar 

  67. Germano, J. J., Reynolds, M., Essebag, V. & Josephson, M. E. Frequency and causes of implantable cardioverter-defibrillator therapies: is device therapy proarrhythmic? Am. J. Cardiol. 97, 1255–1261 (2006).

    PubMed  Google Scholar 

  68. Glikson, M. et al. Long-term outcome of patients who received implantable cardioverter defibrillators for stable ventricular tachycardia. J. Cardiovasc. Electrophysiol. 15, 658–664 (2004).

    PubMed  Google Scholar 

  69. Glikson, M. et al. Optimal combination of discriminators for differentiating ventricular from supraventricular tachycardia by dual-chamber defibrillators. J. Cardiovasc. Electrophysiol. 16, 732–739 (2005).

    PubMed  Google Scholar 

  70. Hreybe, H. et al. Relation of advanced heart failure symptoms to risk of inappropriate defibrillator shocks. Am. J. Cardiol. 97, 544–546 (2006).

    PubMed  Google Scholar 

  71. Boriani, G., Biffi, M., Frabetti, L., Lattuca, J. J. & Branzi, A. Clinical evaluation of morphology discrimination: an algorithm for rhythm discrimination in cardioverter defibrillators. Pacing Clin. Electrophysiol. 24, 994–1001 (2001).

    CAS  PubMed  Google Scholar 

  72. Boriani, G. et al. Combined use of morphology discrimination, sudden onset, and stability as discriminating algorithms in single chamber cardioverter defibrillators. Pacing Clin. Electrophysiol. 25, 1357–1366 (2002).

    PubMed  Google Scholar 

  73. Duru, F., Bauersfeld, U., Rahn-Schonbeck, M. & Candinas, R. Morphology discriminator feature for enhanced ventricular tachycardia discrimination in implantable cardioverter defibrillators. Pacing Clin. Electrophysiol. 23, 1365–1374 (2000).

    CAS  PubMed  Google Scholar 

  74. Gold, M. R. et al. A new defibrillator discrimination algorithm utilizing electrogram morphology analysis. Pacing Clin. Electrophysiol. 22, 179–182 (1999).

    CAS  PubMed  Google Scholar 

  75. Gronefeld, G. C. Discrimination of ventricular tachycardia from supraventricular tachycardia in implantable cardioverter defibrillators by automated electrogram morphology analysis: can leads finally replace the electrophysiologist? Europace 10, 1131–1132 (2008).

    PubMed  Google Scholar 

  76. Klein, G. J. et al. Improving SVT discrimination in single-chamber ICDs: a new electrogram morphology-based algorithm. J. Cardiovasc. Electrophysiol. 17, 1310–1319 (2006).

    PubMed  Google Scholar 

  77. Luthje, L., Vollmann, D., Rosenfeld, M. & Unterberg-Buchwald, C. Electrogram configuration and detection of supraventricular tachycardias by a morphology discrimination algorithm in single chamber ICDs. Pacing Clin. Electrophysiol. 28, 555–560 (2005).

    CAS  PubMed  Google Scholar 

  78. Toquero, J. et al. Morphology discrimination criterion wavelet improves rhythm discrimination in single-chamber implantable cardioverter-defibrillators: Spanish Register of morphology discrimination criterion wavelet (REMEDIO). Europace 11, 727–733 (2009).

    PubMed  Google Scholar 

  79. Theuns, D. A., Rivero-Ayerza, M., Goedhart, D. M., Miltenburg, M. & Jordaens, L. J. Morphology discrimination in implantable cardioverter-defibrillators: consistency of template match percentage during atrial tachyarrhythmias at different heart rates. Europace 10, 1060–1066 (2008).

    PubMed  Google Scholar 

  80. Bansch, D. et al. The 1+1 trial: a prospective trial of a dual- versus a single-chamber implantable defibrillator in patients with slow ventricular tachycardias. Circulation 110, 1022–1029 (2004).

    PubMed  Google Scholar 

  81. Deisenhofer, I. et al. Do current dual chamber cardioverter defibrillators have advantages over conventional single chamber cardioverter defibrillators in reducing inappropriate therapies? A randomized, prospective study. J. Cardiovasc. Electrophysiol. 12, 134–142 (2001).

    CAS  PubMed  Google Scholar 

  82. Friedman, P. A. et al. Dual-chamber versus single-chamber detection enhancements for implantable defibrillator rhythm diagnosis: the detect supraventricular tachycardia study. Circulation 113, 2871–2879 (2006).

    PubMed  Google Scholar 

  83. Burri, H. & Senouf, D. Remote monitoring and follow-up of pacemakers and implantable cardioverter defibrillators. Europace 11, 701–709 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Heidbuchel, H. et al. Potential role of remote monitoring for scheduled and unscheduled evaluations of patients with an implantable defibrillator. Europace 10, 351–357 (2008).

    PubMed  Google Scholar 

  85. Res, J. C., Theuns, D. A. & Jordaens, L. The role of remote monitoring in the reduction of inappropriate implantable cardioverter defibrillator therapies. Clin. Res. Cardiol. 95 (Suppl. 3), III17–III21 (2006).

    PubMed  Google Scholar 

  86. Schoenfeld, M. H. et al. Remote monitoring of implantable cardioverter defibrillators: a prospective analysis. Pacing Clin. Electrophysiol. 27, 757–763 (2004).

    PubMed  Google Scholar 

  87. Varma, N. Rationale and design of a prospective study of the efficacy of a remote monitoring system used in implantable cardioverter defibrillator follow-up: the Lumos-T Reduces Routine Office Device Follow-Up Study (TRUST) study. Am. Heart J. 154, 1029–1034 (2007).

    PubMed  Google Scholar 

  88. Neuzil, P., Taborsky, M., Holy, F. & Wallbrueck, K. Early automatic remote detection of combined lead insulation defect and ICD damage. Europace 10, 556–557 (2008).

    PubMed  Google Scholar 

  89. Ricci, R. P., Morichelli, L., Gargaro, A., Laudadio, M. T. & Santini, M. Home monitoring in patients with implantable cardiac devices: is there a potential reduction of stroke risk? Results from a computer model tested through Monte Carlo simulations. J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540–81672009.01543.x.

  90. Spencker, S., Coban, N., Koch, L., Schirdewan, A. & Muller, D. Potential role of home monitoring to reduce inappropriate shocks in implantable cardioverter-defibrillator patients due to lead failure. Europace 11, 483–488 (2009).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. Wilkoff.

Ethics declarations

Competing interests

B. L. Wilkoff has acted as a consultant for InnerPulse, LifeWatch, Medtronic, and Spectranetics and has received research support from Biotronik, Boston Scientific, Medtronic, Spectranetics, and St Jude Medical. O. Wazni declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wazni, O., Wilkoff, B. Strategic choices to reduce implantable cardioverter-defibrillator-related morbidity. Nat Rev Cardiol 7, 376–383 (2010). https://doi.org/10.1038/nrcardio.2010.50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing