Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic dysregulation in monogenic disorders and cancer — finding method in madness

Abstract

Cancer is a prime example of a disease process in which carcinogenic and metabolic changes are intertwined to promote cell survival and growth. One approach to unravel this complex relationship is by studying rare, monogenic disorders caused by mutations in genes encoding metabolic enzymes or regulators. There are hundreds of these diseases, most of which manifest in childhood and are collectively termed 'inborn errors of metabolism' (IEMs). Several IEMs demonstrate the consequences of chronic, systemic loss of a particular metabolic activity that can result in malignancy. In this Opinion article, we present a conceptual categorization of IEMs associated with cancer and discuss how assessment of these rare diseases might inform us about the biological foundations of common types of cancer and opportunities for cancer diagnosis and therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Historical landmarks in research into inborn errors of metabolism and cancer metabolism.
Figure 2: Pathogenicity of inborn errors of metabolism that can predispose to cancer.
Figure 3: Proposed mechanisms for malignancy in selected inborn errors of metabolism.
Figure 4: Glycogen storage disease Ia is an inborn error of metabolism with a cancerous metabolic phenotype.
Figure 5: Non-metabolic functions of glycolytic enzymes.

References

  1. 1

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    DeBerardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Garrod, A. The Croonian lectures on inborn errors of metabolism, lecture II: alkaptonuria. Lancet 2, 73–79 (1908).

    CAS  Google Scholar 

  6. 6

    Garrod, A. E. The incidence of alkaptonuria: a study in chemical individuality. 1902. Mol. Med. 2, 274–282 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Hamosh, A. et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 30, 52–55 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Pampols, T. Inherited metabolic rare disease. Adv. Exp. Med. Biol. 686, 397–431 (2010).

    Article  PubMed  Google Scholar 

  10. 10

    Dipple, K. M. & McCabe, E. R. Phenotypes of patients with “simple” Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66, 1729–1735 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Lanpher, B., Brunetti-Pierri, N. & Lee, B. Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat. Rev. Genet. 7, 449–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Jeffery, C. J. Moonlighting proteins — an update. Mol. Biosyst. 5, 345–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Erez, A., Shchelochkov, O. A., Plon, S. E., Scaglia, F. & Lee, B. Insights into the pathogenesis and treatment of cancer from inborn errors of metabolism. Am. J. Hum. Genet. 88, 402–421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Baysal, B. E. et al. Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J. Med. Genet. 39, 178–183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Burnichon, N. et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 19, 3011–3020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. & Schumacker, P. T. Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol. 28, 718–731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Kaelin, W. G. Jr. SDH5 mutations and familial paraganglioma: somewhere Warburg is smiling. Cancer Cell 16, 180–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Ricketts, C. J. et al. Tumor risks and genotype–phenotype–proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum. Mutat. 31, 41–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Bayley, J. P., Launonen, V. & Tomlinson, I. P. The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency. BMC Med. Genet. 9, 20 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Zheng, L. et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6, 6001 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Wellen, K. E. & Thompson, C. B. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13, 270–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Garber, J. E. & Offit, K. Hereditary cancer predisposition syndromes. J. Clin. Oncol. 23, 276–292 (2005).

    Article  PubMed  Google Scholar 

  23. 23

    Samuel, N., Villani, A., Fernandez, C. V. & Malkin, D. Management of familial cancer: sequencing, surveillance and society. Nat. Rev. Clin. Oncol. 11, 723–731 (2014).

    Article  PubMed  Google Scholar 

  24. 24

    Cizmarova, M. et al. Rasopathies — dysmorphic syndromes with short stature and risk of malignancy. Endocr. Regul. 47, 217–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Schiffman, J. D. et al. Update on pediatric cancer predisposition syndromes. Pediatr. Blood Cancer 60, 1247–1252 (2013).

    Article  PubMed  Google Scholar 

  26. 26

    Levy, P. A. An overview of newborn screening. J. Dev. Behav. Pediatr. 31, 622–631 (2010).

    Article  PubMed  Google Scholar 

  27. 27

    Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5, 857–866 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Litten, J. B. & Tomlinson, G. E. Liver tumors in children. Oncologist 13, 812–820 (2008).

    Article  PubMed  Google Scholar 

  29. 29

    Nelson, R. L., Davis, F. G., Persky, V. & Becker, E. Risk of neoplastic and other diseases among people with heterozygosity for hereditary hemochromatosis. Cancer 76, 875–879 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Lithner, F. & Wetterberg, L. Hepatocellular carcinoma in patients with acute intermittent porphyria. Acta Med. Scand. 215, 271–274 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Savas, N. et al. Hepatocellular carcinoma in Wilson's disease: a rare association in childhood. Pediatr. Transplant. 10, 639–643 (2006).

    Article  PubMed  Google Scholar 

  32. 32

    Yin, P. H. et al. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br. J. Cancer 90, 2390–2396 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Cassiman, D. et al. Bilateral renal cell carcinoma development in long-term Fabry disease. J. Inherit. Metab. Dis. 30, 830–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Xu, R. et al. Hepatocellular carcinoma in type 1 Gaucher disease: a case report with review of the literature. Semin. Liver Dis. 25, 226–229 (2005).

    Article  PubMed  Google Scholar 

  35. 35

    Osborne, N. J. et al. HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology 51, 1311–1318 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Harrison, S. A. & Bacon, B. R. Relation of hemochromatosis with hepatocellular carcinoma: epidemiology, natural history, pathophysiology, screening, treatment, and prevention. Med. Clin. North Am. 89, 391–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Bartlett, D. C., Lloyd, C., McKiernan, P. J. & Newsome, P. N. Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J. Inherit. Metab. Dis. 37, 745–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Yang, M., Soga, T. & Pollard, P. J. Oncometabolites: linking altered metabolism with cancer. J. Clin. Invest. 123, 3652–3658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    Article  CAS  Google Scholar 

  40. 40

    Tuppen, H. A., Blakely, E. L., Turnbull, D. M. & Taylor, R. W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 1797, 113–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Rakheja, D., Medeiros, L. J., Bevan, S. & Chen, W. The emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasms. Front. Oncol. 3, 169 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Sullivan, L. B. et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51, 236–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 511–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Singh, A. K., Pandey, P., Tewari, M., Pandey, H. P. & Shukla, H. S. Human mitochondrial genome flaws and risk of cancer. Mitochondrial DNA 25, 329–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Carew, J. S. & Huang, P. Mitochondrial defects in cancer. Mol. Cancer 1, 9 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Scheers, I., Bachy, V., Stephenne, X. & Sokal, E. M. Risk of hepatocellular carcinoma in liver mitochondrial respiratory chain disorders. J. Pediatr. 146, 414–417 (2005).

    Article  PubMed  Google Scholar 

  50. 50

    Kunz, B. A. Mutagenesis and deoxyribonucleotide pool imbalance. Mutat. Res. 200, 133–147 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Kulawiec, M. et al. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol. Ther. 7, 1732–1743 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Dimmock, D. et al. Citrin deficiency, a perplexing global disorder. Mol. Genet. Metab. 96, 44–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Nagasaka, H. et al. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol. Genet. Metab. 97, 21–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Kimura, A. et al. Histological findings in the livers of patients with neonatal intrahepatic cholestasis caused by citrin deficiency. Hepatol. Res. 40, 295–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Fukuhara, N., Tokiguchi, S., Shirakawa, K. & Tsubaki, T. Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J. Neurol. Sci. 47, 117–133 (1980).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Holme, E. et al. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 52, 551–556 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Bourgeron, T. et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet. 11, 144–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Kerrigan, J. F., Aleck, K. A., Tarby, T. J., Bird, C. R. & Heidenreich, R. A. Fumaric aciduria: clinical and imaging features. Ann. Neurol. 47, 583–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Gimenez-Roqueplo, A. P. New advances in the genetics of pheochromocytoma and paraganglioma syndromes. Ann. NY Acad. Sci. 1073, 112–121 (2006).

    Article  PubMed  Google Scholar 

  60. 60

    Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  Google Scholar 

  61. 61

    Stratakis, C. A. & Carney, J. A. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J. Intern. Med. 266, 43–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Adam, J. et al. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell Rep. 3, 1440–1448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Zheng, L. et al. Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer Metab. 1, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Alam, N. A. et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum. Mol. Genet. 12, 1241–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Rogers, R. E. et al. Wilms tumor in a child with L-2-hydroxyglutaric aciduria. Pediatr. Dev. Pathol. 13, 408–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Moroni, I. et al. L-2-hydroxyglutaric aciduria and brain malignant tumors: a predisposing condition? Neurology 62, 1882–1884 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Van Schaftingen, E., Rzem, R. & Veiga-da-Cunha, M. L-2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J. Inherit. Metab. Dis. 32, 135–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Kranendijk, M., Struys, E. A., Salomons, G. S., Van der Knaap, M. S. & Jakobs, C. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 35, 571–587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Kranendijk, M. et al. IDH2 mutations in patients with d-2-hydroxyglutaric aciduria. Science 330, 336 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Nota, B. et al. Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined d-2- and L-2-hydroxyglutaric aciduria. Am. J. Hum. Genet. 92, 627–631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Lei, K. J., Shelly, L. L., Pan, C. J., Sidbury, J. B. & Chou, J. Y. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262, 580–583 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Rake, J. P. et al. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur. J. Pediatr. 161, S20–S34 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Chou, J. Y. & Mansfield, B. C. Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease. Hum. Mutat. 29, 921–930 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Di Rocco, M. et al. Hepatocellular adenoma and metabolic balance in patients with type Ia glycogen storage disease. Mol. Genet. Metab. 93, 398–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Park, S. K., Haase, V. H. & Johnson, R. S. von Hippel Lindau tumor suppressor regulates hepatic glucose metabolism by controlling expression of glucose transporter 2 and glucose 6-phosphatase. Int. J. Oncol. 30, 341–348 (2007).

    CAS  PubMed  Google Scholar 

  79. 79

    Nicholson, L. J. et al. Epigenetic silencing of argininosuccinate synthetase confers resistance to platinum-induced cell death but collateral sensitivity to arginine auxotrophy in ovarian cancer. Int. J. Cancer 125, 1454–1463 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Dillon, B. J. et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 100, 826–833 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Delage, B. et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 126, 2762–2772 (2010).

    CAS  PubMed  Google Scholar 

  82. 82

    Yang, H., Zhai, G., Ji, X., Su, J. & Lin, M. Reduced expression of argininosuccinate lyase is closely associated with postresectional survival in hepatocellular carcinoma: an immunohistochemistry study of 61 cases. Appl. Immunohistochem. Mol. Morphol. 20, 602–606 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Kobayashi, E. et al. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol. Cancer Ther. 9, 535–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Syed, N. et al. Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis. 4, e458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Lincet, H. & Icard, P. How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene http://dx.doi.org/10.1038/onc.2014.320 (2014).

  86. 86

    Erez, A. Argininosuccinic aciduria: from a monogenic to a complex disorder. Genet. Med. 15, 251–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Majewski, N. et al. Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16, 819–830 (2004).

    Article  CAS  Google Scholar 

  88. 88

    Danial, N. N. et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Yang, J., Li, J. H., Wang, J. & Zhang, C. Y. Molecular modeling of BAD complex resided in a mitochondrion integrating glycolysis and apoptosis. J. Theor. Biol. 266, 231–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Niinaka, Y., Paku, S., Haga, A., Watanabe, H. & Raz, A. Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells. Cancer Res. 58, 2667–2674 (1998).

    CAS  PubMed  Google Scholar 

  91. 91

    Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Guo, C., Liu, S. & Sun, M. Z. Novel insight into the role of GAPDH playing in tumor. Clin. Transl. Oncol. 15, 167–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Tristan, C., Shahani, N., Sedlak, T. W. & Sawa, A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal. 23, 317–323 (2011).

    Article  CAS  Google Scholar 

  94. 94

    Iqbal, M. A., Gupta, V., Gopinath, P., Mazurek, S. & Bamezai, R. N. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 588, 2685–2692 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Giovannini, M., Biasucci, G., Luotti, D., Fiori, L. & Riva, E. Nutrition in children affected by inherited metabolic diseases. Ann. Ist. Super. Sanita 31, 489–502 (1995).

    CAS  PubMed  Google Scholar 

  97. 97

    Seyfried, T. N., Flores, R., Poff, A. M., D'Agostino, D. P. & Mukherjee, P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett. 356, 289–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Klement, R. J. Restricting carbohydrates to fight head and neck cancer — is this realistic? Cancer Biol. Med. 11, 145–161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Yang, Y. et al. Increased intake of vegetables, but not fruit, reduces risk for hepatocellular carcinoma: a meta-analysis. Gastroenterology 147, 1031–1042 (2014).

    Article  PubMed  Google Scholar 

  100. 100

    Schwingshackl, L. & Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int. J. Cancer 135, 1884–1897 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Shils, M. E. Principles of nutritional therapy. Cancer 43, 2093–2102 (1979).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Wilcken, B. An introduction to nutritional treatment in inborn errors of metabolism — different disorders, different approaches. Southeast Asian J. Trop. Med. Publ. Health 34 (Suppl. 3), 198–201 (2003).

    Google Scholar 

  103. 103

    Nagamani, S. C. et al. A randomized controlled trial to evaluate the effects of high-dose versus low-dose of arginine therapy on hepatic function tests in argininosuccinic aciduria. Mol. Genet. Metab. 107, 315–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Walker, V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obes. Metab. 11, 823–835 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Folling, I. The discovery of phenylketonuria. Acta Paediatr. Suppl. 407, 4–10 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Guthrie, R. & Susi, A. A. Simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32, 338–343 (1963).

    CAS  PubMed  Google Scholar 

  109. 109

    Woo, S. L., Lidsky, A. S., Guttler, F., Chandra, T. & Robson, K. J. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306, 151–155 (1983).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Pearson, P. et al. The status of online Mendelian inheritance in man (OMIM) medio 1994. Nucleic Acids Res. 22, 3470–3473 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Flier, J. S., Mueckler, M. M., Usher, P. & Lodish, H. F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492–1495 (1987).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    DiLella, A. G., Huang, W. M. & Woo, S. L. Screening for phenylketonuria mutations by DNA amplification with the polymerase chain reaction. Lancet 1, 497–499 (1988).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Goldwater, R. S. Gaucher disease, enzyme replacement therapy, and the Patient Assistance Program. J. Intraven Nurs. 19, 83–88 (1996).

    CAS  PubMed  Google Scholar 

  114. 114

    Afaq, A., Syed, R. & Bomanji, J. PET/MRI: a new technology in the field of molecular imaging. Br. Med. Bull. 108, 159–171 (2013).

    Article  PubMed  Google Scholar 

  115. 115

    Gimm, O., Armanios, M., Dziema, H., Neumann, H. P. & Eng, C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res. 60, 6822–6825 (2000).

    CAS  PubMed  Google Scholar 

  116. 116

    Desnick, R. J. Enzyme replacement therapy for Fabry disease: lessons from two α-galactosidase A orphan products and one FDA approval. Expert Opin. Biol. Ther. 4, 1167–1176 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    Article  CAS  Google Scholar 

  118. 118

    Rivkees, S. A. “The Newborn Screening Saves Lives Act” — four million calls for support! J. Pediatr. Endocrinol. Metab. 20, 457–458 (2007).

    Article  PubMed  Google Scholar 

  119. 119

    Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Valle and B. Lee for sharing their insights on the mechanisms by which IEMs lead to tissue dysfunction. R.J.D. is the Joel B. Steinberg Chair of Pediatrics at the University of Texas Southwestern Medical Center and is supported by grants from the US National Institutes of Health (CA157996) and the Cancer Prevention and Research Institute of Texas (RP130272). He is on the scientific advisory boards of Agios Pharmaceuticals and Peloton Therapeutics. A.E. is the incumbent Leah Omenn Career Development Chair and is supported by research grants from the European research program (CIG618113, ERC614204), the Israel Science Foundation (1343/13; 1952/13) and the Minerva grant award (711730). A.E. received additional support from the Adelis Foundation, the Henry S. and Anne S. Reich Research Fund, the Dukler Fund for Cancer Research, the Paul Sparr Foundation, the Saul and Theresa Esman Foundation, Joseph Piko Baruch and the estate of Fannie Sherr.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ayelet Erez or Ralph J. DeBerardinis.

Ethics declarations

Competing interests

R.J.D. is a member of the Scientific Advisory Board of Agios Pharmaceuticals and Peloton Therapeutics, two companies interested in cancer metabolism. A.E. declares no competing interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erez, A., DeBerardinis, R. Metabolic dysregulation in monogenic disorders and cancer — finding method in madness. Nat Rev Cancer 15, 440–448 (2015). https://doi.org/10.1038/nrc3949

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing