Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Metastasis prevention by targeting the dormant niche

Abstract

Despite considerable advancements that shattered previously held dogmas about the metastatic cascade, the evolution of therapies to treat metastatic disease has not kept up. In this Opinion article, I argue that, rather than waiting for metastases to emerge before initiating treatment, it would be more effective to target metastatic seeds before they sprout. Specifically, I advocate directing therapies towards the niches that harbour dormant disseminated tumour cells to sensitize them to cytotoxic agents. Treatment sensitization, achieved by disrupting reservoirs of leukaemic stem cells and latent HIV, argues that this approach, although unconventional, could succeed in improving patient survival by delaying or even preventing metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of dormant disseminated tumour cells are conferred by tissue-specific perivascular niches.
Figure 2: Parallels between stem cell regulation and the regulation of dormant disseminated tumour cells by the perivascular niche.
Figure 3: Two strategies to treat disseminated tumour cells.

Similar content being viewed by others

References

  1. Willis, R. A. The Spread of Tumours in the Human Body (J. & A. Churchill, 1934).

    Google Scholar 

  2. Schlimok, G. et al. Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc. Natl Acad. Sci. USA 84, 8672–8676 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cote, R. J. et al. Monoclonal antibodies detect occult breast carcinoma metastases in the bone marrow of patients with early stage disease. Am. J. Surg. Pathol. 12, 333–340 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Pantel, K. et al. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 347, 649–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Cote, R. J., Rosen, P. P., Lesser, M. L., Old, L. J. & Osborne, M. P. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J. Clin. Oncol. 9, 1749–1756 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Mansi, J. L. et al. Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years' follow-up. Eur. J. Cancer 27, 1552–1555 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Pantel, K. et al. Immunocytochemical detection of isolated tumour cells in bone marrow of patients with untreated stage C prostatic cancer. Eur. J. Cancer 31A, 1627–1632 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Thorban, S. et al. Immunocytochemical detection of disseminated tumor cells in the bone marrow of patients with esophageal carcinoma. J. Natl Cancer Inst. 88, 1222–1227 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Schlimok, G. et al. Micrometastatic tumour cells in bone marrow of patients with gastric cancer: methodological aspects of detection and prognostic significance. Eur. J. Cancer 27, 1461–1465 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Weckermann, D. et al. Disseminated cytokeratin positive tumor cells in the bone marrow of patients with prostate cancer: detection and prognostic value. J. Urol. 166, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Goss, P. E. & Chambers, A. F. Does tumour dormancy offer a therapeutic target? Nature Rev. Cancer 10, 871–877 (2010).

    Article  CAS  Google Scholar 

  15. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    Article  PubMed  Google Scholar 

  16. Uhr, J. W. & Pantel, K. Controversies in clinical cancer dormancy. Proc. Natl Acad. Sci. USA 108, 12396–12400 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kang, Y. & Pantel, K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23, 573–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  19. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nature Cell Biol. 15, 807–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nature Rev. Cancer 7, 834–846 (2007).

    Article  CAS  Google Scholar 

  21. Gimbrone, M. A. Jr., Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Noltenius, C. & Noltenius, H. Dormant tumor cells in liver and brain. An autopsy study on metastasizing tumors. Pathol. Res. Pract. 179, 504–511 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Naumov, G. N., Folkman, J. & Straume, O. Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin. Exp. Metastasis 26, 51–60 (2009).

    Article  PubMed  Google Scholar 

  27. O'Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Giancotti, F. G. Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Rev. Cancer 14, 611–622 (2014).

    Article  CAS  Google Scholar 

  30. Braun, S. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Krawczyk, N. et al. HER2 status on persistent disseminated tumor cells after adjuvant therapy may differ from initial HER2 status on primary tumor. Anticancer Res. 29, 4019–4024 (2009).

    PubMed  Google Scholar 

  32. Janni, W. et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse — a European pooled analysis. Clin. Cancer Res. 17, 2967–2976 (2011).

    Article  PubMed  Google Scholar 

  33. Naumov, G. N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weckermann, D. et al. Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J. Clin. Oncol. 27, 1549–1556 (2009).

    Article  PubMed  Google Scholar 

  36. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nature Rev. Cancer 13, 714–726 (2013).

    Article  CAS  Google Scholar 

  37. Weaver, V. M. et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205–216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667 (1999).

    CAS  PubMed  Google Scholar 

  39. Fridman, R. et al. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA 87, 6698–6702 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Korah, R., Boots, M. & Wieder, R. Integrin α5β1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res. 64, 4514–4522 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Sethi, T. et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Med. 5, 662–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Boudreau, N., Sympson, C. J., Werb, Z. & Bissell, M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gudjonsson, T. et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115, 39–50 (2002).

    CAS  PubMed  Google Scholar 

  44. Lee, E. Y., Parry, G. & Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98, 146–155 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Streuli, C. H. et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol. 129, 591–603 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weir, M. L. et al. Dystroglycan loss disrupts polarity and β-casein induction in mammary epithelial cells by perturbing laminin anchoring. J. Cell Sci. 119, 4047–4058 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  49. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nature Rev. Cancer 10, 138–146 (2010).

    Article  CAS  Google Scholar 

  51. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lindahl, P. et al. Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli. Development 125, 3313–3322 (1998).

    CAS  PubMed  Google Scholar 

  56. Tufro, A., Norwood, V. F., Carey, R. M. & Gomez, R. A. Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J. Am. Soc. Nephrol. 10, 2125–2134 (1999).

    CAS  PubMed  Google Scholar 

  57. Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147, 539–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376–380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Louissaint, A. Jr, Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  62. Scadden, D. T. Nice neighborhood: emerging concepts of the stem cell niche. Cell 157, 41–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldman, S. A. & Chen, Z. Perivascular instruction of cell genesis and fate in the adult brain. Nature Neurosci. 14, 1382–1389 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Xiao, Y. et al. Perivascular hair follicle stem cells associate with a venule annulus. J. Invest. Dermatol. 133, 2324–2331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Christov, C. et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18, 1397–1409 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Butler, T. P. & Gullino, P. M. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 35, 512–516 (1975).

    CAS  PubMed  Google Scholar 

  69. Klein, C. A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tata, P. R. et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vora, A. J., Toh, C. H., Peel, J. & Greaves, M. Use of granulocyte colony-stimulating factor (G–CSF) for mobilizing peripheral blood stem cells: risk of mobilizing clonal myeloma cells in patients with bone marrow infiltration. Br. J. Haematol. 86, 180–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Fischer, J. C. et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl Acad. Sci. USA 110, 16580–16585 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stoletov, K. et al. Role of connexins in metastatic breast cancer and melanoma brain colonization. J. Cell Sci. 126, 904–913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Resovi, A., Pinessi, D., Chiorino, G. & Taraboletti, G. Current understanding of the thrombospondin-1 interactome. Matrix Biol. 37, 83–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, J. H. et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4–NFATc1–thrombospondin-1 axis. Cell 156, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature Cell Biol. 15, 1351–1361 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shiozawa, Y. et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12, 116–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Charles, N. et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Lathia, J. D. et al. Integrin α 6 regulates glioblastoma stem cells. Cell Stem Cell 6, 421–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lathia, J. D. et al. Laminin α 2 enables glioblastoma stem cell growth. Ann. Neurol. 72, 766–778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pietras, A. et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14, 357–369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu, T. S. et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 71, 6061–6072 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fletcher, J. I., Haber, M., Henderson, M. J. & Norris, M. D. ABC transporters in cancer: more than just drug efflux pumps. Nature Rev. Cancer 10, 147–156 (2010).

    Article  CAS  Google Scholar 

  94. Lu, J. et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23, 171–185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cao, Z. et al. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25, 350–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aird, W. C. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2, a006429 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Blankson, J. N., Persaud, D. & Siliciano, R. F. The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med. 53, 557–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Chun, T. W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Richman, D. D. et al. The challenge of finding a cure for HIV infection. Science 323, 1304–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kulkosky, J. et al. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98, 3006–3015 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Beliveau, A. et al. Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes Dev. 24, 2800–2811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kenny, P. A. & Bissell, M. J. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J. Clin. Invest. 117, 337–345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, F. et al. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J. Natl Cancer Inst. 94, 1494–1503 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, F. et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. El Touny, L. H. et al. Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J. Clin. Invest. 124, 156–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Chery, L. et al. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget. 5, 9939–9951 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kim, R. S. et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE 7, e35569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Klein, C. A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nature Biotech. 20, 387–392 (2002).

    Article  CAS  Google Scholar 

  114. Welty, C. J. et al. Single cell transcriptomic analysis of prostate cancer cells. BMC Mol. Biol. 14, 6 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, A. et al. Endothelial cell migration and vascular endothelial growth factor expression are the result of loss of breast tissue polarity. Cancer Res. 69, 6721–6729 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Catena, R. et al. Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 3, 578–589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kang, S. Y. et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc. Natl Acad. Sci. USA 106, 12115–12120 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lawler, J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell. Mol. Med. 6, 1–12 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jones, F. S. & Rous, P. On the cause of the localization of secondary tumors at points of injury. J. Exp. Med. 20, 404–412 (1914).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nature Rev. Cancer 9, 285–293 (2009).

    Article  CAS  Google Scholar 

  122. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).

    Article  CAS  Google Scholar 

  124. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nature Med. 17, 867–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Osterberg, L. & Blaschke, T. Adherence to medication. N. Engl. J. Med. 353, 487–497 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Schmidt, D. & Leppik, I. E. (eds) Compliance in Epilepsy (Elsevier, 1988).

  128. Davies, C. et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381, 805–816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Aft, R. et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol. 11, 421–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Doan, P. L. & Chute, J. P. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26, 54–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Cogle, C. R. et al. Functional integration of acute myeloid leukemia into the vascular niche. Leukemia 28, 1978–1987 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Colmone, A. et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322, 1861–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotech. 25, 1315–1321 (2007).

    Article  CAS  Google Scholar 

  134. Krause, D. S. et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nature Med. 19, 1513–1517 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Boyerinas, B. et al. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121, 4821–4831 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Estey, E. et al. Use of granulocyte colony-stimulating factor before, during, and after fludarabine plus cytarabine induction therapy of newly diagnosed acute myelogenous leukemia or myelodysplastic syndromes: comparison with fludarabine plus cytarabine without granulocyte colony-stimulating factor. J. Clin. Oncol. 12, 671–678 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Visani, G. et al. FLAG (fludarabine + high-dose cytarabine + G–CSF): an effective and tolerable protocol for the treatment of 'poor risk' acute myeloid leukemias. Leukemia 8, 1842–1846 (1994).

    CAS  PubMed  Google Scholar 

  139. Becker, P. S. et al. Clofarabine with high dose cytarabine and granulocyte colony-stimulating factor (G–CSF) priming for relapsed and refractory acute myeloid leukaemia. Br. J. Haematol. 155, 182–189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Becker, P. S. Dependence of acute myeloid leukemia on adhesion within the bone marrow microenvironment. ScientificWorldJournal 2012, 856467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Norton, L. & Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977).

    CAS  PubMed  Google Scholar 

  144. Trumpp, A., Essers, M. & Wilson, A. Awakening dormant haematopoietic stem cells. Nature Rev. Immunol. 10, 201–209 (2010).

    Article  CAS  Google Scholar 

  145. Saito, Y. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nature Biotech. 28, 275–280 (2010).

    Article  CAS  Google Scholar 

  146. Hardingham, J. E. et al. Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int. J. Cancer 89, 8–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Pantel, K. et al. Circulating epithelial cells in patients with benign colon diseases. Clin. Chem. 58, 936–940 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Rhim, A. D. et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146, 647–651 (2014).

    Article  PubMed  Google Scholar 

  149. Lindemann, F., Schlimok, G., Dirschedl, P., Witte, J. & Riethmuller, G. Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340, 685–689 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Putz, E. et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res. 59, 241–248 (1999).

    CAS  PubMed  Google Scholar 

  151. Suzuki, M., Mose, E. S., Montel, V. & Tarin, D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 169, 673–681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gil-Bernabe, A. M. et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119, 3164–3175 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med. 18, 883–891 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Barkan, D. et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70, 5706–5716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Med. 20, 1315–1320 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kumar, M. E. et al. Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 346, 1258810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author apologises to those whose invaluable contributions to the field were not cited owing to space limitations. The author is indebted to M. J. Bissell for the critical insights and endless conversation that formed the basis of this article, and for funding (from the National Cancer Institute (Award Number U54CA143836), U.S. Department of Defense Innovator Award (W81XWH0810736); and the Breast Cancer Research Foundation) that supported his time in her laboratory. The author's laboratory is partially supported by the National Cancer Institute (Award Number P50CA097186) and by the Cuyamaca Foundation. The author is very grateful to D. Lyden, C. Li, J. Bielas, and A. Bruni-Cardoso for their critical feedback on this manuscript, and to C. A. Grzelak for her advice on figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus M. Ghajar.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghajar, C. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15, 238–247 (2015). https://doi.org/10.1038/nrc3910

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3910

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer