Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypermutation in human cancer genomes: footprints and mechanisms

A Corrigendum to this article was published on 28 September 2015

This article has been updated

Key Points

  • Increased spontaneous or environmentally enhanced mutagenesis often correlates with increased mutation load and cancer risk. Mutation loads of individual cancer genomes can differ by several orders of magnitude and the top mutation loads are defined as having a hypermutation phenotype.

  • Recent accumulation of cancer genomics information caused a breakthrough in understanding the origin and mechanisms of hypermutation. Mutation rates and distribution across cancer genomes are influenced by features of genome structure and function, such as replication timing, transcription and chromatin structure. Mutation rates also increase in the vicinity of rearrangement breakpoints

  • Mutation rates can vary depending on local DNA sequence and the kind of genetic change. These parameters are defined as mutation signatures. Statistical analysis of somatic mutation signatures in cancer genomes has deciphered new sources of hypermutation in cancer and has confirmed the role of classic carcinogenic mutagens in cancer hypermutation.

  • Mutation signatures can be identified by large-scale statistical analysis (termed non-negative matrix factorization (NMF)) of complex genome-wide mutation catalogues, as well as through selecting a fraction of mutations enriched with a single mutagenic mechanism. The latter can be achieved by concentrating on groups of closely spaced mutations: that is, mutation clusters.

  • Combining NMF methods with analyses that concentrate on clustered mutations helped to identify a new kind of strong and ubiquitous carcinogenic mutagen that acts endogenously — a subclass of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) cytidine deaminases. The use of these complementary techniques greatly enhanced the statistical power to analyse APOBEC-mediated mutagenesis in cancer.

  • Merging statistical pattern analysis with mechanistic information is feasible for other sources of mutations for which vast mechanistic knowledge has been accumulated over past decades. This can lead to the identification of new environmental, occupational and endogenous sources of hypermutation, as well as to an understanding of their specific affects in different cancer types, and even in individual cancer samples.

Abstract

A role for somatic mutations in carcinogenesis is well accepted, but the degree to which mutation rates influence cancer initiation and development is under continuous debate. Recently accumulated genomic data have revealed that thousands of tumour samples are riddled by hypermutation, broadening support for the idea that many cancers acquire a mutator phenotype. This major expansion of cancer mutation data sets has provided unprecedented statistical power for the analysis of mutation spectra, which has confirmed several classical sources of mutation in cancer, highlighted new prominent mutation sources (such as apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) enzymes) and empowered the search for cancer drivers. The confluence of cancer mutation genomics and mechanistic insight provides great promise for understanding the basic development of cancer through mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lesions in single-stranded DNA (ssDNA) can result in clusters of strand-coordinated mutations.
Figure 2: Mutation patterns and mechanistic knowledge used to define an APOBEC mutation signature and produce sample-specific statistics evaluating mutagenesis.
Figure 3: Sources of hypermutation in cancer.

Similar content being viewed by others

Change history

  • 28 September 2015

    In the version of this article that was originally published, there were errors in parts of the text referring to the temozolomide-associated mutation signature. In Table 2, the resulting base should be a T and the resulting base change should be C→T. In Box 1, example 3 should compare the overlapping mutation signatures of tobacco and DNA polymerase ε, not those of tobacco and temozolomide. These errors have now been corrected online.

References

  1. Aaltonen, L. A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Cleaver, J. E. & Crowley, E. UV damage, DNA repair and skin carcinogenesis. Frontiers Biosci. 7, D1024–D1043 (2002).

    CAS  Google Scholar 

  3. Hart, R. W., Setlow, R. B. & Woodhead, A. D. Evidence That Pyrimidine Dimers in DNA Can Give Rise to Tumors. Proc. Natl Acad. Sci. USA 74, 5574–5578 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hecht, S. S. Progress and challenges in selected areas of tobacco carcinogenesis. Chem. Res. Toxicol. 21, 160–171 (2008).

    Article  PubMed  Google Scholar 

  5. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Cunningham, J. M. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58, 3455–3460 (1998).

    CAS  PubMed  Google Scholar 

  8. Fox, E. J., Prindle, M. J. & Loeb, L. A. Do mutator mutations fuel tumorigenesis? Cancer Metastasis Rev. 32, 353–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fox, E. J., Beckman, R. A. & Loeb, L. A. Reply: Is There Any Genetic Instability in Human Cancer? DNA Repair 9, 859–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shibata, D. & Lieber, M. R. Is there any genetic instability in human cancer? DNA Repair 9, 858; discussion 859–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). This paper applied NMF to a mutation catalogue from 7,042 tumours to identify 21 mutation signatures occurring in these cancers. Additional analyses were carried out to suggest the causes of some of these signatures.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013). This paper identifies genes that are recurrently mutated in sequenced whole genomes and exomes of various cancers, thereby identifying genes the alteration of which probably contributes to cancer progression. This method standardizes the rate of gene mutation by the overall regional mutation rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  14. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  15. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  16. Nagarajan, N. et al. Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol. 13, R115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  20. Benzer, S. & Freese, E. Induction of Specific Mutations with 5-Bromouracil. Proc. Natl Acad. Sci. USA 44, 112–119 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rogozin, I. B. & Pavlov, Y. I. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat. Res. 544, 65–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Pfeifer, G. P., You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light. Mutat. Res. 571, 19–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Sage, E. Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem. Photobiol. 57, 163–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. De, S. & Babu, M. M. A time-invariant principle of genome evolution. Proc. Natl Acad. Sci. USA 107, 13004–13009 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Drier, Y. et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res. 23, 228–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hicks, W. M., Kim, M. & Haber, J. E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malkova, A. & Haber, J. E. Mutations arising during repair of chromosome breaks. Annu. Rev. Genet. 46, 455–473 (2012). This review discusses the experimental evidence that DSB repair processes are prone to increased rates of mutation.

    Article  CAS  PubMed  Google Scholar 

  28. Deem, A. et al. Break-induced replication is highly inaccurate. PLoS Biol. 9, e1000594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shee, C., Gibson, J. L. & Rosenberg, S. M. Two mechanisms produce mutation hotspots at DNA breaks in Escherichia coli. Cell Rep. 2, 714–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burch, L. H. et al. Damage-induced localized hypermutability. Cell Cycle 10, 1073–1085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, K. et al. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent. PLoS Genet. 8, e1003149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424–435 (2012). This paper identified mutation clusters that are induced by APOBEC cytidine deaminase activity in human multiple myeloma, prostate cancer and head and neck cancer. It also provided experimental evidence from a yeast model system that DNA damage-induced mutation clusters can be formed by targeting regions of ssDNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y., Gordenin, D. A. & Resnick, M. A. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. DNA Repair 9, 914–921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, Y., Sterling, J., Storici, F., Resnick, M. A. & Gordenin, D. A. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet. 4, e1000264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhind, N. & Gilbert, D. M. DNA replication timing. Cold Spring Harb. Perspect. Biol. 5, a010132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stamatoyannopoulos, J. A. What does our genome encode? Genome Res. 22, 1602–1611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thurman, R. E., Day, N., Noble, W. S. & Stamatoyannopoulos, J. A. Identification of higher-order functional domains in the human ENCODE regions. Genome Res. 17, 917–927 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, L., De, S. & Michor, F. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nature Commun. 4, 1502 (2013).

    Article  CAS  Google Scholar 

  39. Polak, P. et al. Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nature Biotech. 32, 71–75 (2014).

    Article  CAS  Google Scholar 

  40. Koren, A. et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am. J. Hum. Genet. 91, 1033–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stamatoyannopoulos, J. A. et al. Human mutation rate associated with DNA replication timing. Nature Genet. 41, 393–395 (2009). This paper reports the discovery that regions of the genome that replicate late during S-phase have a higher rate of substitutions during human evolution.

    Article  CAS  PubMed  Google Scholar 

  42. Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013). References 42 and 45 describe extremely high mutation loads and specific mutation signatures in the WGS and WES of upper urinary tract urothelial cell carcinomas that are associated with exposure to aristolochic acid.

    Article  CAS  PubMed  Google Scholar 

  46. Schuster-Bockler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Devarajan, K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol. 4, e1000029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013). This paper describes the mathematical framework for applying NMF to identify mutation signatures that occur in human cancer databases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jia, P., Pao, W. & Zhao, Z. Patterns and processes of somatic mutations in nine major cancers. BMC Med. Genom. 7, 11 (2014).

    Article  CAS  Google Scholar 

  53. Wang, J. et al. Evidence for mutation showers. Proc. Natl Acad. Sci. USA 104, 8403–8408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, Z., Feng, J., Buzin, C. H. & Sommer, S. S. Epidemiology of doublet/multiplet mutations in lung cancers: evidence that a subset arises by chronocoordinate events. PLoS ONE 3, e3714 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan, K., Resnick, M. A. & Gordenin, D. A. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair 12, 878–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Mimitou, E. P. & Symington, L. S. DNA end resection — unraveling the tail. DNA Repair 10, 344–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dewar, J. M. & Lydall, D. Similarities and differences between “uncapped” telomeres and DNA double-strand breaks. Chromosoma 121, 117–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Saini, N. et al. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502, 389–392 (2013). This paper reports the discovery that the specialized form of DSB repair called break-induced replication occurs through conservative DNA synthesis in which the leading and lagging strand synthesis is uncoupled, leading to the formation of a ssDNA intermediate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. McInerney, P. & O'Donnell, M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J. Biol. Chem. 279, 21543–21551 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Yeeles, J. T., Poli, J., Marians, K. J. & Pasero, P. Rescuing stalled or damaged replication forks. Cold Spring Harb. Perspect. Biol. 5, a012815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakofsky, C. J. et al. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 7, 1640–1648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartek, J., Lukas, J. & Bartkova, J. DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'. Cell Cycle 6, 2344–2347 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Chin, K. et al. In situ analyses of genome instability in breast cancer. Nature Genet. 36, 984–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Vega, F. et al. Splenic marginal zone lymphomas are characterized by loss of interstitial regions of chromosome 7q, 7q31.32 and 7q36.2 that include the protection of telomere 1 (POT1) and sonic hedgehog (SHH) genes. Br. J. Haematol. 142, 216–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Poncet, D. et al. Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood 111, 2388–2391 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Roberts, S. A. & Gordenin, D. A. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. Bioessays 36, 382–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nature Genet. 45, 970–976 (2013). This paper used a hypothesis-driven approach to calculate the over-representation of APOBEC signature mutations across 2,680 tumours. This work identified APOBEC signature mutagenesis as a prominent source of mutation in six cancer types and correlated the total number of these mutations with APOBEC mRNA levels.

    Article  CAS  PubMed  Google Scholar 

  72. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nature Immunol. 2, 530–536 (2001).

    Article  CAS  Google Scholar 

  73. Neuberger, M. S. & Rada, C. Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T. J. Exp. Med. 204, 7–10 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, M. & Schatz, D. G. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 30, 173–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Maul, R. W. & Gearhart, P. J. AID and somatic hypermutation. Adv. Immunol. 105, 159–191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peled, J. U. et al. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26, 481–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Rogozin, I. B. & Diaz, M. Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J. Immunol. 172, 3382–3384 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA 92, 12520–12524 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Commun. 5, 2997 (2014).

    Article  CAS  Google Scholar 

  81. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Refsland, E. W. & Harris, R. S. The APOBEC3 family of retroelement restriction factors. Curr. Top. Microbiol. Immunol. 371, 1–27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith, H. C., Bennett, R. P., Kizilyer, A., McDougall, W. M. & Prohaska, K. M. Functions and regulation of the APOBEC family of proteins. Semin. Cell Dev. Biol. 23, 258–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Gibbs, P. E. & Lawrence, C. W. Novel mutagenic properties of abasic sites in Saccharomyces cerevisiae. J. Mol. Biol. 251, 229–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Gibbs, P. E., McDonald, J., Woodgate, R. & Lawrence, C. W. The relative roles in vivo of Saccharomyces cerevisiae Pol ε, Pol ζ, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer. Genetics 169, 575–582 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krokan, H. E. et al. Error-free versus mutagenic processing of genomic uracil-Relevance to cancer. DNA Repair 19, 38–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Pham, P., Chelico, L. & Goodman, M. F. DNA deaminases AID and APOBEC3G act processively on single-stranded DNA. DNA Repair 6, 689–692; author reply 693–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Chelico, L., Pham, P., Calabrese, P. & Goodman, M. F. APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA. Nature Struct. Mol. Biol. 13, 392–399 (2006).

    Article  CAS  Google Scholar 

  89. Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nature Genet. 45, 977–983 (2013). This paper investigated the expression of APOBEC3B across tumours of multiple cancer types, finding that the mRNA levels of this gene correlated with the total mutation load of the tumour. Mutations from tumours with the highest APOBEC3B expression levels occurred primarily within APOBEC-targeted motifs.

    Article  CAS  PubMed  Google Scholar 

  91. Taylor, B. J. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife 2, e00534 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kidd, J. M., Newman, T. L., Tuzun, E., Kaul, R. & Eichler, E. E. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 3, e63 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Long, J. et al. A common deletion in the APOBEC3 genes and breast cancer risk. J. Natl Cancer Inst. 105, 573–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xuan, D. et al. APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry. Carcinogenesis 34, 2240–2243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, T. et al. Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. Hum. Mol. Genet. 22, 1262–1269 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Nik-Zainal, S. et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nature Genet. 46, 487–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Pfeifer, G. P. Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301, 259–281 (2006).

    CAS  PubMed  Google Scholar 

  98. Visnes, T. et al. Uracil in DNA and its processing by different DNA glycosylases. Phil. Trans. R. Soc. B 364, 563–568 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Antequera, F. Structure, function and evolution of CpG island promoters. Cell. Mol. Life Sci. 60, 1647–1658 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Schmidt, S. et al. Hypermutable non-synonymous sites are under stronger negative selection. PLoS Genet. 4, e1000281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. World Health Organisation. A Review of Human Carcinogens: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 100D, 7–303 (World Health Organisation, 2012).

  102. Plosky, B. S. & Woodgate, R. Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr. Opin. Genet. Dev. 14, 113–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Sale, J. E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ikehata, H. & Ono, T. The mechanisms of UV mutagenesis. J. Radiat. Res. 52, 115–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Berger, M. F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Breen, A. P. & Murphy, J. A. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 18, 1033–1077 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Cadet, J. & Wagner, J. R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Biol. 5, a012559 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Evans, M. D., Dizdaroglu, M. & Cooke, M. S. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567, 1–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Degtyareva, N. P. et al. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase ζ-dependent only for adenines and guanines. Nucleic Acids Res. 41, 8995–9005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Moraes, E. C., Keyse, S. M. & Tyrrell, R. M. Mutagenesis by hydrogen peroxide treatment of mammalian cells: a molecular analysis. Carcinogenesis 11, 283–293 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Tkeshelashvili, L. K., McBride, T., Spence, K. & Loeb, L. A. Mutation spectrum of copper-induced DNA damage. J. Biol. Chem. 266, 6401–6406 (1991).

    CAS  PubMed  Google Scholar 

  112. Bacolla, A., Cooper, D. N. & Vasquez, K. M. Mechanisms of base substitution mutagenesis in cancer genomes. Genes 5, 108–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bacolla, A. et al. Guanine holes are prominent targets for mutation in cancer and inherited disease. PLoS Genet. 9, e1003816 (2013). This paper describes a positive correlation between sequence-dependent oxidation potentials of guanines and the number of mutations that occur within specific sequence motifs in various human cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. DeMarini, D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat. Res. 567, 447–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, W. et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465, 473–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Bodell, W. J., Gaikwad, N. W., Miller, D. & Berger, M. S. Formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with temozolomide: implications for the treatment of low-grade adult and pediatric brain tumors. Cancer Epidemiol. Biomarkers Prev. 12, 545–551 (2003).

    CAS  PubMed  Google Scholar 

  120. Stojic, L., Brun, R. & Jiricny, J. Mismatch repair and DNA damage signalling. DNA Repair 3, 1091–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Tomita-Mitchell, A. et al. Mismatch repair deficient human cells: spontaneous and MNNG-induced mutational spectra in the HPRT gene. Mutat. Res. 450, 125–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Cahill, D. P. et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res. 13, 2038–2045 (2007). This paper identified mutation or loss of expression of MSH6 as a recurrent mediator of glioblastoma resistance to the alkylating chemotherapeutic drug temozolomide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hunter, C. et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66, 3987–3991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moen, E. L., Stark, A. L., Zhang, W., Dolan, M. E. & Godley, L. A. The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide. Mol. Cancer Ther. (2014).

  125. Zhang, J. et al. Certain imidazotetrazines escape O6-methylguanine-DNA methyltransferase and mismatch repair. Oncology 80, 195–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014). This paper used exome sequencing to compare the mutations occurring in primary gliomas to those in relapsed tumours, finding that relapsed tumours frequently stem from cancer cells that are established early during tumour progression. Moreover, tumours that recurred following treatment with temozolomide more frequently resulted in high-grade gliomas with temozolomide-induced mutations in the RB and mTOR pathways.

    Article  CAS  PubMed  Google Scholar 

  127. Arlt, V. M., Stiborova, M. & Schmeiser, H. H. Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis 17, 265–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. National Toxicology Program. Aristolochic acids. Rep. Carcinog. 12, 45–49 (2011).

  129. Sidorenko, V. S. et al. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res. 40, 2494–2505 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, C. H. et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc. Natl Acad. Sci. USA 109, 8241–8246 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hollstein, M., Moriya, M., Grollman, A. P. & Olivier, M. Analysis of TP53 mutation spectra reveals the fingerprint of the potent environmental carcinogen, aristolochic acid. Mutat. Res. 753, 41–49 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Kunkel, T. A. & Erie, D. A. DNA mismatch repair. Annu. Rev. Biochem. 74, 681–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Shcherbakova, P. V. & Fijalkowska, I. J. Translesion synthesis DNA polymerases and control of genome stability. Front. Biosci. 11, 2496–2517 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Vilar, E. & Gruber, S. B. Microsatellite instability in colorectal cancer-the stable evidence. Nature Rev. Clin. Oncol. 7, 153–162 (2010).

    Article  CAS  Google Scholar 

  136. Kim, T. M., Laird, P. W. & Park, P. J. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155, 858–868 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Briggs, S. & Tomlinson, I. Germline and somatic polymerase epsilon and delta mutations define a new class of hypermutated colorectal and endometrial cancers. J. Pathol. 230, 148–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Palles, C. et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nature Genet. 45, 136–144 (2013). This paper describes germline mutations in the exonuclease domains of POLE and POLD1 as predisposing to familial colorectal and endometrial cancers, probably causing a class of microsatellite-stable hypermutated tumours.

    Article  CAS  PubMed  Google Scholar 

  139. Valle, L. et al. New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Hum. Mol. Genet. 23, 3506–3512 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Zou, Y. et al. Frequent POLE1 p. S297F mutation in Chinese patients with ovarian endometrioid carcinoma. Mutat. Res. 761, 49–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Nick McElhinny, S. A., Gordenin, D. A., Stith, C. M., Burgers, P. M. & Kunkel, T. A. Division of labor at the eukaryotic replication fork. Mol. Cell 30, 137–144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

  143. Donehower, L. A. et al. MLH1-silenced and non-silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes. J. Pathol. 229, 99–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-ε. Nature 404, 1011–1013 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl Acad. Sci. USA 101, 4262–4267 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Totoki, Y. et al. High-resolution characterization of a hepatocellular carcinoma genome. Nature Genet. 43, 464–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nature Biotech. 30, 413–421 (2012). This paper describes an algorithm for estimating whether given cancer mutations are clonal or subclonal based on allelic fractions, tumour purity and regional ploidy.

    Article  CAS  Google Scholar 

  149. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nature Genet. 45, 1127–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This paper describes mass breakage of individual chromosomes and subsequent repair that results in multiple, regionally isolated chromosome rearrangements, known as chromothripsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012). This paper describes the exome sequencing of paediatric rhabdoid cancers, showing that they have a genome with remarkably few genetic alterations and only one recurrent mutation occurring in SMARCB1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011). This paper describes the sequencing of the protein-coding regions of medulloblastomas, determining that these tumours have a low number of mutations, with the primary recurrent mutations occurring in MLL2 and MLL3 . This suggests that epigenetic alteration has a role in pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  155. Crompton, B. D. et al. The genomic landscape of pediatric ewing sarcoma. Cancer Discov. http://dx.doi.org/10.1158/2159-8290.CD-13-1037 (2014).

  156. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014). This paper analysed mutations occurring in 4,072 human tumours to find likely cancer drivers as recurrently mutated genes. This analysis identified 33 new cancer genes and estimated that between 600 to 5,000 samples need to be sequenced to identify all of the cancer genes in a given cancer type.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nature Genet. 46, 116–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dorsett, Y. et al. A role for AID in chromosome translocations between c-myc and the IgH variable region. J. Exp. Med. 204, 2225–2232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Burrell, R. A. & Swanton, C. The evolution of the unstable cancer genome. Curr. Opin. Genet. Dev. 24, 61–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R. APOBEC-Mediated Cytosine Deamination Links PIK3CA Helical Domain Mutations to Human Papillomavirus-Driven Tumor Development. Cell Rep. 7, 1833–1841 (2014). This paper determined that human papillomavirus (HPV)-positive head and neck cancers have a higher number of mutations occurring in DNA sequences that are targeted by APOBEC cytidine deaminases, resulting in higher incidence of PIK3CA helical domain mutations in these tumours. The favouring of the helical domain mutations, which reside in APOBEC-target motifs, over kinase domain mutation suggests that the APOBEC enzymes are actively contributing to cancer progression in these tumours.

    Article  CAS  PubMed  Google Scholar 

  162. Viros, A. et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511, 478–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Douville, C. et al. CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics 29, 647–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nature Genet. 45, 478–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Jager, N. et al. Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155, 567–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kumar, A. et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc. Natl Acad. Sci. USA 108, 17087–17092 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Poon, S., McPherson, J., Tan, P., Teh, B. & Rozen, S. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention. Genome Med. 6, 24 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. Kwiatkowski, D. Zaykin and K. Chan for advice on the manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Environmental Health Sciences (D.A.G. and S.A.R.) and by an NIH Pathway to Independence Award K99ES022633-01 (S.A.R.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Gordenin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mutation load

The number of mutations in the genome or part of the genome of a cell, a group of cells (tumour, tissue and so on) or an organism.

Mutation rates

(Also known as mutation frequencies). The numbers of mutations per unit of length (for example, per Megabase) or biological time (for example, per cell generation).

Drivers

Mutations that increase the probability of tumour incidence.

Structural rearrangements

Changes in the location of genomic regions relative to each other.

Mutation reporters

DNA sequences that, when mutated in a cell, give the cell a phenotype that can be selected. In most cases the mutation either restores the function of an inactive protein or provides resistance to a drug.

Mutation spectrum

The list of mutation types and coordinates within a mutation load.

Late replicating regions

Regions of the genome where DNA is synthesized near the end of S-phase during replication.

Transcription-coupled repair

(TCR). A form of nucleotide excision repair that utilizes a stalled RNA polymerase as a means to recognize a DNA lesion in the transcribed strand.

Nucleotide excision repair

(NER). A DNA repair pathway that removes bulky DNA lesions by removing a stretch of the DNA strand containing the lesion and then by subsequently using the remaining undamaged DNA strand as a template to synthesize a new stretch of DNA to replace the excised one.

Mutation signatures

Characteristics of a mutation, such as the mutated base, the resulting base (or bases) and nucleotides in the immediate vicinity that occur more frequently than expected with random mutation of genomic DNA.

DNA lesion

A specific change in DNA structure that results from DNA damage; for example, cytidine deamination, base alkylation, base oxidation, strand crosslinks, ultraviolet-induced dimers and DNA breakage.

Mutation clusters

Groups of mutations that are spaced more closely than expected by random distribution of mutations in a genome.

Break-induced replication

A DNA double-strand-break repair mechanism involving the invasion of one DNA end into a homologous locus on a sister chromatid or homologous chromosome. Once invaded, the broken DNA is used to prime replication to the end of the unbroken sister chromatid or homologous chromosome to replace the DNA sequence that is lost owing to the DNA double-strand-break.

Translesion synthesis

(TLS). A form of lesion tolerance that involves the insertion of a new nucleotide opposite a DNA lesion, usually by a specialized DNA polymerase.

R-loops

Stable hybrids of RNA and DNA that are formed during transcription.

Strand-coordination

A phenomenon in which clustered mutations involve changes of only one kind of base within the same DNA strand (for example, C-coordination — only cytosines are mutated in the top DNA strand)

Non-canonical excision repair

Excision of a DNA lesion or modification that does not completely follow the pathway mechanisms of base excision repair, nucleotide excision repair or mismatch repair.

Kataegis

(or mutation shower). A group of clustered mutations carrying additional similarity features that are unlikely to be random (for example, changes of the same nucleotide in the given strand — strand-coordination).

Rearrangement breakpoints

A pair of distant genomic coordinates that are brought into the immediate vicinity of each other by a rearrangement.

SN1-type alkylating agents

Chemicals that form a reactive intermediate in the body that can attack DNA bases to covalently link an organic group (for example, a methyl group).

Mismatch repair

(MMR). A DNA repair pathway that removes mismatched nucleotides resulting from DNA replication errors (for example, C·T base pairs). MMR removes a stretch of the DNA strand containing the mismatched nucleotide and then subsequently uses the remaining intact DNA strand as a template to synthesize a new stretch of DNA to replace the excised one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, S., Gordenin, D. Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 14, 786–800 (2014). https://doi.org/10.1038/nrc3816

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3816

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer