Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Stem cell-based therapies for cancer treatment: separating hope from hype

Abstract

Stem cell-based therapies are emerging as a promising strategy to tackle cancer. Multiple stem cell types have been shown to exhibit inherent tropism towards tumours. Moreover, when engineered to express therapeutic agents, these pathotropic delivery vehicles can effectively target sites of malignancy. This perspective considers the current status of stem cell-based treatments for cancer and provides a rationale for translating the most promising preclinical studies into the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Using stem cells (SCs) to promote tumour cell death.
Figure 2: Potentiating stem cell (SC) efficacy.

Similar content being viewed by others

References

  1. Abbott, A. Leaked files slam stem-cell therapy. Nature 505, 139–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Jones, B. J. & McTaggart, S. J. Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp. Hematol. 36, 733–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Bernardo, M. E. & Fibbe, W. E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Milwid, J. M. et al. Enriched protein screening of human bone marrow mesenchymal stromal cell secretions reveals MFAP5 and PENK as novel IL-10 modulators. Mol. Ther. 22, 999–1007 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muraoka, K. et al. The high integration and differentiation potential of autologous neural stem cell transplantation compared with allogeneic transplantation in adult rat hippocampus. Exp. Neurol. 199, 311–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, T., Zhang, Z. N., Rong, Z. & Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S. & Galipeau, J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106, 4057–4065 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Zangi, L. et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27, 2865–2874 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Schu, S. et al. Immunogenicity of allogeneic mesenchymal stem cells. J. Cell. Mol. Med. 16, 2094–2103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ankrum, J. A., Ong, J. F. & Karp, J. M. Mesenchymal stem cells: immune evasive, not immune privileged. Nature Biotech. 32, 252–260 (2014).

    Article  CAS  Google Scholar 

  11. Aboody, K. S. et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA 97, 12846–12851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown, A. B. et al. Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum. Gene Ther. 14, 1777–1785 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tang, Y. et al. In vivo tracking of neural progenitor cell migration to glioblastomas, Hum. Gene Ther. 14, 1247–1254 (2003).

    Article  CAS  Google Scholar 

  14. Yang, J. et al. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model. Stem Cells 30, 1021–1029 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Shah, K. et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann. Neurol. 57, 34–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gondi, C. S. et al. Human umbilical cord blood stem cells show PDGF-D-dependent glioma cell tropism in vitro and in vivo. Neuro Oncol. 12, 453–465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Suarez-Alvarez, B., Lopez-Vazquez, A. & Lopez-Larrea, C. Mobilization and homing of hematopoietic stem cells. Adv. Exp. Med. Biol. 741, 152–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Shi, M. et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92, 897–904 (2007).

    Article  PubMed  Google Scholar 

  19. Wynn, R. F. et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104, 2643–2645 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Park, S. A. et al. CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int. J. Oncol. 38, 97–103 (2011).

    CAS  PubMed  Google Scholar 

  21. Guo, Y., Hangoc, G., Bian, H., Pelus, L. M. & Broxmeyer, H. E. SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells 23, 1324–1332 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Koizumi, S. et al. Migration of mouse-induced pluripotent stem cells to glioma-conditioned medium is mediated by tumor-associated specific growth factors. Oncol. Lett. 2, 283–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kendall, S. E. et al. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells 26, 1575–1586 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Vallabhaneni, K. C. et al. Urokinase receptor mediates mobilization, migration, and differentiation of mesenchymal stem cells. Cardiovasc. Res. 90, 113–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Gutova, M. et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 26, 1406–1413 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt, N. O. et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7, 623–629 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho, I. A. et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27, 1366–1375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Motaln, H. et al. Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant 21, 1529–1545 (2012).

    Article  PubMed  Google Scholar 

  29. Schichor, C. et al. Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro. Exp. Neurol. 234, 208–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Qiao, L. et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 18, 500–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, Y. L. et al. Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection. Mol. Pharm. 9, 2698–2709 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Jo, J., Hong, S., Choi, W. Y. & Lee, D. R. Cell-penetrating peptide (CPP)-conjugated proteins is an efficient tool for manipulation of human mesenchymal stromal cells. Sci. Rep. 4, 4378 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Stuckey, D. W. & Shah, K. TRAIL on trial: preclinical advances in cancer therapy. Trends Mol. Med. 19, 685–694 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Sasportas, L. S. et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc. Natl Acad. Sci. USA 106, 4822–4827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van de Water, J. A. et al. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proc. Natl Acad. Sci. USA 109, 16642–16647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balyasnikova, I. V., Ferguson, S. D., Sengupta, S., Han, Y. & Lesniak, M. S. Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS ONE 5, e9750 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ito, S. et al. Human neural stem cells transduced with IFN-β and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Ther. 17, 299–306 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Studeny, M. et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res. 62, 3603–3608 (2002).

    CAS  PubMed  Google Scholar 

  39. Ren, C. et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther. 15, 1446–1453 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dembinski, J. L. et al. Tumor stroma engraftment of gene-modified mesenchymal stem cells as anti-tumor therapy against ovarian cancer. Cytotherapy 15, 20–32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren, C. et al. Therapeutic potential of mesenchymal stem cells producing interferon-α in a mouse melanoma lung metastasis model. Stem Cells 26, 2332–2338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Eekelen, M. et al. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 29, 3185–3195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, S. K. et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin. Cancer Res. 11, 5965–5970 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Gao, P., Ding, Q., Wu, Z., Jiang, H. & Fang, Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett. 290, 157–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Seo, S. H. et al. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther. 18, 488–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryu, C. H. et al. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum. Gene Ther. 22, 733–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Hong, X., Miller, C., Savant-Bhonsale, S. & Kalkanis, S. N. Antitumor treatment using interleukin- 12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 64, 1139–1146; discussion 1146–1147 (2009).

    Article  PubMed  Google Scholar 

  49. Xu, G. et al. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int. 33, 466–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Kosaka, H. et al. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther. 19, 572–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Y. et al. Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther. 19, 189–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Aboody, K. S. et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci. Transl. Med. 5, 184ra59 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Altaner, C. et al. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int. J. Cancer 134, 1458–1465 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, S. K. et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin. Cancer Res. 12, 5550–5556 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Martinez-Quintanilla, J. et al. Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells 31, 1706–1714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryu, C. H. et al. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem. Biophys. Res. Commun. 421, 585–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, W. Y. et al. Immortalized human fetal bone marrow-derived mesenchymal stromal cell expressing suicide gene for anti-tumor therapy in vitro and in vivo. Cytotherapy 15, 1484–1497 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, K. Y., Kim, S. U., Leung, P. C., Jeung, E. B. & Choi, K. C. Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci. 101, 955–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Hong, S. H. et al. Human neural stem cells expressing carboxyl esterase target and inhibit tumor growth of lung cancer brain metastases. Cancer Gene Ther. 20, 678–682 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Gutova, M. et al. Neural stem cell-mediated CE/CPT-11 enzyme/prodrug therapy in transgenic mouse model of intracerebellar medulloblastoma. Gene Ther. 20, 143–150 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug. Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Roger, M. et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 31, 8393–8401 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Auffinger, B. et al. Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma? Oncotarget 4, 378–396 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li, L. et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 5, 7462–7470 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Duchi, S. et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma. J. Control Release 168, 225–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Schnarr, K. et al. Gold nanoparticle-loaded neural stem cells for photothermal ablation of cancer. Adv. Healthc. Mater. 2, 976–982 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Rachakatla, R. S. et al. Attenuation of mouse melanoma by A/C magnetic field after delivery of bi-magnetic nanoparticles by neural progenitor cells. ACS Nano 4, 7093–7104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aghi, M. & Martuza, R. L. Oncolytic viral therapies - the clinical experience. Oncogene 24, 7802–7816 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Garcia-Castro, J. et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther. 17, 476–483 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Komarova, S., Kawakami, Y., Stoff-Khalili, M. A., Curiel, D. T. & Pereboeva, L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol. Cancer Ther. 5, 755–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Kranzler, J., Tyler, M. A., Sonabend, A. M., Ulasov, I. V. & Lesniak, M. S. Stem cells as delivery vehicles for oncolytic adenoviral virotherapy. Curr. Gene Ther. 9, 389–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmed, A. U. et al. Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol. Ther. 18, 1846–1856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stoff-Khalili, M. A. et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res. Treat. 105, 157–167 (2007).

    Article  PubMed  Google Scholar 

  74. Sonabend, A. M. et al. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26, 831–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Yong, R. L. et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res. 69, 8932–8940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahmed, A. U. et al. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol. Pharm. 8, 1559–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mader, E. K. et al. Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. J. Transl. Med. 11, 20 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ong, H. T. et al. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J. Hepatol 59, 999–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoffmann, D. & Wildner, O. Comparison of herpes simplex virus- and conditionally replicative adenovirus-based vectors for glioblastoma treatment. Cancer Gene Ther. 14, 627–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Markert, J. M. et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol. Ther. 17, 199–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Harrow, S. et al. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther. 11, 1648–1658 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Papanastassiou, V. et al. The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther. 9, 398–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Duebgen, M. et al. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J. Natl Cancer Inst. 106, dju090 (2014).

    Article  PubMed  Google Scholar 

  84. Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotech. 32, 347–355 (2014).

    Article  CAS  Google Scholar 

  86. Mussolino, C. & Cathomen, T. TALE nucleases: tailored genome engineering made easy. Curr. Opin. Biotechnol. 23, 644–650 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ankrum, J. A. et al. Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nature Protoc. 9, 233–245 (2014).

    Article  CAS  Google Scholar 

  89. Sarkar, D., Ankrum, J. A., Teo, G. S., Carman, C. V. & Karp, J. M. Cellular and extracellular programming of cell fate through engineered intracrine-, paracrine-, and endocrine-like mechanisms. Biomaterials 32, 3053–3061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Honeth, G., Staflin, K., Kalliomaki, S., Lindvall, M. & Kjellman, C. Chemokine-directed migration of tumor-inhibitory neural progenitor cells towards an intracranially growing glioma. Exp. Cell Res. 312, 1265–1276 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, D. S. et al. Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev. 18, 511–519 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Ratajczak, M. Z. et al. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 26, 63–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Pulukuri, S. M., Gorantla, B., Dasari, V. R., Gondi, C. S. & Rao, J. S. Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol. Cancer Res. 8, 1074–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zielske, S. P., Livant, D. L. & Lawrence, T. S. Radiation increases invasion of gene-modified mesenchymal stem cells into tumors. Int. J. Radiat. Oncol. Biol. Phys. 75, 843–853 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Klopp, A. H. et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67, 11687–11695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hanahan, D. Rethinking the war on cancer. Lancet 383, 558–563 (2014).

    Article  PubMed  Google Scholar 

  98. Yi, B. R. et al. Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-β against ductal breast cancer cells in cellular and xenograft models. Stem Cell Res. 12, 36–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Yan, C. et al. Human umbilical cord mesenchymal stem cells as vehicles of CD20-specific TRAIL fusion protein delivery: a double-target therapy against non-Hodgkin's lymphoma. Mol. Pharm. 10, 142–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Du, W., Uslar, L., Sevala, S. & Shah, K. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors. PLoS ONE 9, e95490 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kim, S. M. et al. Potential application of temozolomide in mesenchymal stem cell-based TRAIL gene therapy against malignant glioma. Stem Cells Transl. Med. 3, 172–182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tobias, A. L. et al. The timing of neural stem cell-based virotherapy is critical for optimal therapeutic efficacy when applied with radiation and chemotherapy for the treatment of glioblastoma. Stem Cells Transl. Med. 2, 655–666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reitz, M. et al. Intranasal delivery of neural stem/progenitor cells: a noninvasive passage to target intracerebral glioma. Stem Cells Transl. Med. 1, 866–873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Balyasnikova, I. V. et al. Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol. Ther. 22, 140–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hansen, K. et al. A 3-dimensional extracellular matrix as a delivery system for the transplantation of glioma-targeting neural stem/progenitor cells. Neuro Oncol. 12, 645–654 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Goren, A., Dahan, N., Goren, E., Baruch, L. & Machluf, M. Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J. 24, 22–31 (2010).

    Article  PubMed  CAS  Google Scholar 

  108. Rihova, B. Immunocompatibility and biocompatibility of cell delivery systems. Adv. Drug Deliv. Rev. 42, 65–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Reagan, M. R. et al. Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. J. Breast Cancer 15, 273–282 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kauer, T. M., Figueiredo, J. L., Hingtgen, S. & Shah, K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nature Neurosci. 15, 197–204 (2012).

    Article  CAS  Google Scholar 

  111. Menon, L. G. et al. Imaging of human mesenchymal stromal cells: homing to human brain tumors. J. Neurooncol. 107, 257–267 (2012).

    Article  PubMed  Google Scholar 

  112. Thu, M. S. et al. Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS ONE 4, e7218 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chien, L. Y. et al. In vivo magnetic resonance imaging of cell tropism, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials 32, 3275–3284 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Gutova, M. et al. Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use. Stem Cells Transl. Med. 2, 766–775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hasenbach, K. et al. Monitoring the glioma tropism of bone marrow-derived progenitor cells by 2-photon laser scanning microscopy and positron emission tomography. Neuro Oncol. 14, 471–481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sweeney, T. J. et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc. Natl Acad. Sci. USA 96, 12044–12049 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bianco, P. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nature Med. 19, 35–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Yang, T. et al. Activation of mesenchymal stem cells by macrophages prompts human gastric cancer growth through NF-κB pathway. PLoS ONE 9, e97569 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Rowan, B. G. et al. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLoS ONE 9, e89595 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Amariglio, N. et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Rosland, G. V. et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69, 5331–5339 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Med. 19, 998–1004 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Ring, K. L. et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues whose work could not be cited owing to space limitations. This work was supported by grants R01CA138922, R01CA173077, and the James S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Shah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuckey, D., Shah, K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer 14, 683–691 (2014). https://doi.org/10.1038/nrc3798

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3798

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer