Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression

Abstract

Epithelial cells require attachment to the extracellular matrix (ECM) for survival. However, during tumour progression and metastasis, cancerous epithelial cells must adapt to and survive in the absence of ECM. During the past 20 years, several cellular changes, including anoikis, have been shown to regulate cell viability when cells become detached from the ECM. In this Opinion article, we review in detail how cancer cells can overcome or take advantage of these specific processes. Gaining a better understanding of how cancer cells survive during detachment from the ECM will be instrumental in designing chemotherapeutic strategies that aim to eliminate ECM-detached metastatic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anoikis regulation in mammary epithelial cells.
Figure 2: Anoikis-independent mechanisms regulated by interactions with the extracellular matrix (ECM).
Figure 3: Examples of survival strategies used by extracellular matrix (ECM)-detached metastatic cancer cells.

Similar content being viewed by others

References

  1. Sethi, N. & Kang, Y. Unravelling the complexity of metastasis - molecular understanding and targeted therapies. Nature Rev. Cancer 11, 735–748 (2011).

    Article  CAS  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen, D. X. & Massague, J. Genetic determinants of cancer metastasis. Nature Rev. Genet. 8, 341–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature Rev. Cancer 6, 449–458 (2006).

    Article  CAS  Google Scholar 

  5. Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Simpson, C. D., Anyiwe, K. & Schimmer, A. D. Anoikis resistance and tumor metastasis. Cancer Lett. 272, 177–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Buchheit, C. L., Rayavarapu, R. R. & Schafer, Z. T. The regulation of cancer cell death and metabolism by extracellular matrix attachment. Semin. Cell Dev. Biol. 23, 402–411 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer 4, 361–370 (2004).

    Article  CAS  Google Scholar 

  9. Resnicoff, M. et al. Growth inhibition of human melanoma cells in nude mice by antisense strategies to the type 1 insulin-like growth factor receptor. Cancer Res. 54, 4848–4850 (1994).

    CAS  PubMed  Google Scholar 

  10. Reiss, K., D'Ambrosio, C., Tu, X., Tu, C. & Baserga, R. Inhibition of tumor growth by a dominant negative mutant of the insulin-like growth factor I receptor with a bystander effect. Clin. Cancer Res. 4, 2647–2655 (1998).

    CAS  PubMed  Google Scholar 

  11. Dunn, S. E. et al. A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res. 58, 3353–3361 (1998).

    CAS  PubMed  Google Scholar 

  12. Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature Rev. Cancer 12, 159–169 (2012).

    Article  CAS  Google Scholar 

  13. Martin, M. J. et al. The insulin-like growth factor I receptor is required for Akt activation and suppression of anoikis in cells transformed by the ETV6-NTRK3 chimeric tyrosine kinase. Mol. Cell. Biol. 26, 1754–1769 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Irie, H. Y. et al. PTK6 regulates IGF-1-induced anchorage-independent survival. PLoS ONE 5, e11729 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Reginato, M. J. et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nature Cell Biol. 5, 733–740 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Reginato, M. J. et al. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol. Cell. Biol. 25, 4591–4601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grassian, A. R., Schafer, Z. T. & Brugge, J. S. ErbB2 stabilizes epidermal growth factor receptor (EGFR) expression via Erk and Sprouty2 in extracellular matrix-detached cells. J. Biol. Chem. 286, 79–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Haenssen, K. K. et al. ErbB2 requires integrin α5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J. Cell Sci. 123, 1373–1382 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G. & Chiarugi, P. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol. Cell. Biol. 25, 6391–6403 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boerner, J. L., Demory, M. L., Silva, C. & Parsons, S. J. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol. Cell. Biol. 24, 7059–7071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giannoni, E. et al. Redox regulation of anoikis: reactive oxygen species as essential mediators of cell survival. Cell Death Differ. 15, 867–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Giannoni, E., Fiaschi, T., Ramponi, G. & Chiarugi, P. Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene 28, 2074–2086 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, P. et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19, 401–415 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Schafer, Z. T. et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461, 109–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whelan, K. A. et al. Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis. Mol. Biol. Cell 21, 3829–3837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whelan, K. A. et al. The oncogene HER2/neu (ERBB2) requires the hypoxia-inducible factor HIF-1 for mammary tumor growth and anoikis resistance. J. Biol. Chem. 288, 15865–15877 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukazawa, H., Noguchi, K., Masumi, A., Murakami, Y. & Uehara, Y. BimEL is an important determinant for induction of anoikis sensitivity by mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitors. Mol. Cancer Ther. 3, 1281–1288 (2004).

    CAS  PubMed  Google Scholar 

  29. Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc. Natl Acad. Sci. USA 104, 3787–3792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, M. et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487, 510–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carduner, L. et al. Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp. Cell Res. 320, 329–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Attwell, S., Roskelley, C. & Dedhar, S. The integrin-linked kinase (ILK) suppresses anoikis. Oncogene 19, 3811–3815 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Weigel, K. J. et al. CAF-secreted IGFBPs regulate breast cancer cell anoikis. Mol. Cancer Res. 12, 855–866 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  35. Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. & Downward, J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16, 2783–2793 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rytomaa, M., Lehmann, K. & Downward, J. Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. Oncogene 19, 4461–4468 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Rosen, K. et al. Activated Ras prevents downregulation of Bcl-XL triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J. Cell Biol. 149, 447–456 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoo, B. H. et al. Oncogenic ras-induced down-regulation of pro-apoptotic protease caspase-2 is required for malignant transformation of intestinal epithelial cells. J. Biol. Chem. 286, 38894–38903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fukazawa, H. & Uehara, Y. U0126 reverses Ki-ras-mediated transformation by blocking both mitogen-activated protein kinase and p70 S6 kinase pathways. Cancer Res. 60, 2104–2107 (2000).

    CAS  PubMed  Google Scholar 

  41. McFall, A. et al. Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol. Cell. Biol. 21, 5488–5499 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eckert, L. B. et al. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 64, 4585–4592 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Le Gall, M. et al. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol. Biol. Cell 11, 1103–1112 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Becker, T. M. et al. Oncogenic B-RAFV600E promotes anchorage-independent survival of human melanocytes. J. Invest. Dermatol. 130, 2144–2147 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Marani, M. et al. Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene 23, 2431–2441 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Boisvert-Adamo, K. & Aplin, A. E. B-RAF and PI-3 kinase signaling protect melanoma cells from anoikis. Oncogene 25, 4848–4856 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Boisvert-Adamo, K. & Aplin, A. E. Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 27, 3301–3312 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Boisvert-Adamo, K., Longmate, W., Abel, E. V. & Aplin, A. E. Mcl-1 is required for melanoma cell resistance to anoikis. Mol. Cancer Res. 7, 549–556 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Becker, T. M. et al. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene 33, 1158–1166 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nature Rev. Cancer 2, 133–142 (2002).

    Article  Google Scholar 

  52. Bharadwaj, S., Thanawala, R., Bon, G., Falcioni, R. & Prasad, G. L. Resensitization of breast cancer cells to anoikis by tropomyosin-1: role of Rho kinase-dependent cytoskeleton and adhesion. Oncogene 24, 8291–8303 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ma, Z., Myers, D. P., Wu, R. F., Nwariaku, F. E. & Terada, L. S. p66Shc mediates anoikis through RhoA. J. Cell Biol. 179, 23–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, X. et al. Aiolos promotes anchorage independence by silencing p66Shc transcription in cancer cells. Cancer Cell 25, 575–589 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ma, Z., Liu, Z., Wu, R. F. & Terada, L. S. p66Shc restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene 29, 5559–5567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, K. et al. Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Mol. Cell. Biol. 24, 5565–5576 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cai, J. et al. Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis. Neoplasia 10, 41–51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goundiam, O., Nagel, M. D. & Vayssade, M. Akt and RhoA inhibition promotes anoikis of aggregated B16F10 melanoma cells. Cell Biol. Int. 36, 311–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Yamaki, N., Negishi, M. & Katoh, H. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism. Exp. Cell Res. 313, 2821–2832 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Harada, K., Hiramoto-Yamaki, N., Negishi, M. & Katoh, H. Ephexin4 and EphA2 mediate resistance to anoikis through RhoG and phosphatidylinositol 3-kinase. Exp. Cell Res. 317, 1701–1713 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Frisch, S. M., Schaller, M. & Cieply, B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J. Cell Sci. 126, 21–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Derksen, P. W. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10, 437–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Onder, T. T. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645–3654 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Kumar, S. et al. A pathway for the control of anoikis sensitivity by E-cadherin and epithelial-to-mesenchymal transition. Mol. Cell. Biol. 31, 4036–4051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schackmann, R. C. et al. Loss of p120-catenin induces metastatic progression of breast cancer by inducing anoikis resistance and augmenting growth factor receptor signaling. Cancer Res. 73, 4937–4949 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Jia, J. et al. Epithelial mesenchymal transition is required for acquisition of anoikis resistance and metastatic potential in adenoid cystic carcinoma. PLoS ONE 7, e51549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Douma, S. et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Geiger, T. R. & Peeper, D. S. Critical role for TrkB kinase function in anoikis suppression, tumorigenesis, and metastasis. Cancer Res. 67, 6221–6229 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Smit, M. A., Geiger, T. R., Song, J. Y., Gitelman, I. & Peeper, D. S. A. Twist-Snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol. Cell. Biol. 29, 3722–3737 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, N. et al. DEAR1 is a chromosome 1p35 tumor suppressor and master regulator of TGF-β-driven epithelial-mesenchymal transition. Cancer Discov. 3, 1172–1189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nature Rev. Cancer 12, 401–410 (2012).

    Article  CAS  Google Scholar 

  72. Levine, B. & Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mills, K. R., Reginato, M., Debnath, J., Queenan, B. & Brugge, J. S. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc. Natl Acad. Sci. USA 101, 3438–3443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fung, C., Lock, R., Gao, S., Salas, E. & Debnath, J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19, 797–806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Avivar-Valderas, A. et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol. 31, 3616–3629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Avivar-Valderas, A. et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32, 4932–4940 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, N. & Debnath, J. IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9, 1214–1227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Altman, B. J. & Rathmell, J. C. Metabolic stress in autophagy and cell death pathways. Cold Spring Harb. Perspect. Biol. 4, a008763 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Jin, S., DiPaola, R. S., Mathew, R. & White, E. Metabolic catastrophe as a means to cancer cell death. J. Cell Sci. 120, 379–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    Article  CAS  Google Scholar 

  81. Buchakjian, M. R. & Kornbluth, S. The engine driving the ship: metabolic steering of cell proliferation and death. Nature Rev. Mol. Cell Biol. 11, 715–727 (2010).

    Article  CAS  Google Scholar 

  82. Pandolfi, P. P. et al. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14, 5209–5215 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davison, C. A. et al. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res. 73, 3704–3715 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Grassian, A. R., Metallo, C. M., Coloff, J. L., Stephanopoulos, G. & Brugge, J. S. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev. 25, 1716–1733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Wan, Q. et al. Regulation of myosin activation during cell-cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment. Mol. Biol. Cell 23, 2076–2091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, S. et al. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death. Cell Res. 19, 1350–1362 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Wen, S., Shang, Z., Zhu, S., Chang, C. & Niu, Y. Androgen receptor enhances entosis, a non-apoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells. Prostate 73, 1306–1315 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Overholtzer, M. & Brugge, J. S. The cell biology of cell-in-cell structures. Nature Rev. Mol. Cell Biol. 9, 796–809 (2008).

    Article  CAS  Google Scholar 

  92. Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nature Cell Biol. 13, 1335–1343 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Krajcovic, M., Krishna, S., Akkari, L. & Joyce, J. A. & Overholtzer, M. mTOR regulates phagosome and entotic vacuole fission. Mol. Biol. Cell 24, 3736–3745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arteaga, C. L. et al. Treatment of HER2-positive breast cancer: current status and future perspectives. Nature Rev. Clin. Oncol. 9, 16–32 (2012).

    Article  CAS  Google Scholar 

  95. Muthuswamy, S. K., Li, D., Lelievre, S., Bissell, M. J. & Brugge, J. S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nature Cell Biol. 3, 785–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer 5, 675–688 (2005).

    Article  CAS  Google Scholar 

  97. Mailleux, A. A. et al. BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev. Cell 12, 221–234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Collins, N. L. et al. G1/S cell cycle arrest provides anoikis resistance through Erk-mediated Bim suppression. Mol. Cell. Biol. 25, 5282–5291 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Virnig, B. A., Tuttle, T. M., Shamliyan, T. & Kane, R. L. Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J. Natl Cancer Inst. 102, 170–178 (2010).

    Article  PubMed  Google Scholar 

  100. Rosenblatt, J., Raff, M. C. & Cramer, L. P. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11, 1847–1857 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Valentinis, B., Reiss, K. & Baserga, R. Insulin-like growth factor-I-mediated survival from anoikis: role of cell aggregation and focal adhesion kinase. J. Cell. Physiol. 176, 648–657 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Rosen, K., Coll, M. L., Li, A. & Filmus, J. Transforming growth factor-α prevents detachment-induced inhibition of c-Src kinase activity, Bcl-XL down-regulation, and apoptosis of intestinal epithelial cells. J. Biol. Chem. 276, 37273–37279 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Wen, H. C. et al. p38α signaling induces anoikis and lumen formation during mammary morphogenesis. Sci. Signal. 4, ra34 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Coll, M. L., Rosen, K., Ladeda, V. & Filmus, J. Increased Bcl-xL expression mediates v-Src-induced resistance to anoikis in intestinal epithelial cells. Oncogene 21, 2908–2913 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Rosen, K., Shi, W., Calabretta, B. & Filmus, J. Cell detachment triggers p38 mitogen-activated protein kinase-dependent overexpression of Fas ligand. A novel mechanism of Anoikis of intestinal epithelial cells. J. Biol. Chem. 277, 46123–46130 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Owens, T. W. et al. Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ. 16, 1551–1562 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Frisch, S. M., Vuori, K., Ruoslahti, E. & Chan-Hui, P. Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell Biol. 134, 793–799 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Duxbury, M. S., Ito, H., Zinner, M. J., Ashley, S. W. & Whang, E. E. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery 135, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Kamarajan, P. & Kapila, Y. L. An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin α v levels and phosphorylation of FAK and ERK. Apoptosis 12, 2221–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, Y., Lu, H., Dazin, P. & Kapila, Y. Squamous cell carcinoma cell aggregates escape suspension-induced, 53-mediated anoikis: fibronectin and integrin αv mediate survival signals through focal adhesion kinase. J. Biol. Chem. 279, 48342–48349 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Sakamoto, S., McCann, R. O., Dhir, R. & Kyprianou, N. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res. 70, 1885–1895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zouq, N. K. et al. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: differential roles for paxillin and p130Cas. J. Cell Sci. 122, 357–367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zheng, Y. et al. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene 32, 4304–4312 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Windham, T. C. et al. Src activation regulates anoikis in human colon tumor cell lines. Oncogene 21, 7797–7807 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Wei, L., Yang, Y., Zhang, X. & Yu, Q. Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene 23, 9052–9061 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Thapa, N., Choi, S., Hedman, A., Tan, X. & Anderson, R. A. Phosphatidylinositol phosphate 5-kinase Iγi2 in association with Src controls anchorage-independent growth of tumor cells. J. Biol. Chem. 288, 34707–34718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Persad, S. et al. Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc. Natl Acad. Sci. USA 97, 3207–3212 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, S. G. et al. Atypical protein kinase Ciota (PKCiota) promotes metastasis of esophageal squamous cell carcinoma by enhancing resistance to Anoikis via PKCiota-SKP2-AKT pathway. Mol. Cancer Res. 9, 390–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Ivanova, I. A. et al. FER kinase promotes breast cancer metastasis by regulating α6- and β1-integrin-dependent cell adhesion and anoikis resistance. Oncogene 32, 5582–5592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jin, L. et al. p90 RSK2 mediates antianoikis signals by both transcription-dependent and -independent mechanisms. Mol. Cell. Biol. 33, 2574–2585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rosen, K. et al. Downregulation of the pro-apoptotic protein Bak is required for the ras-induced transformation of intestinal epithelial cells. Curr. Biol. 8, 1331–1334 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Liu, Z. et al. Oncogenic Ras inhibits anoikis of intestinal epithelial cells by preventing the release of a mitochondrial pro-apoptotic protein Omi/HtrA2 into the cytoplasm. J. Biol. Chem. 281, 14738–14747 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, Z. et al. ras oncogene triggers up-regulation of cIAP2 and XIAP in intestinal epithelial cells: epidermal growth factor receptor-dependent and -independent mechanisms of ras-induced transformation. J. Biol. Chem. 280, 37383–37392 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Schulze, A., Lehmann, K., Jefferies, H. B., McMahon, M. & Downward, J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15, 981–994 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aoudjit, F. & Vuori, K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J. Cell Biol. 152, 633–643 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang, K., Delarue, F. L. & Sebti, S. M. EGFR, ErbB2 and Ras but not Src suppress RhoB expression while ectopic expression of RhoB antagonizes oncogene-mediated transformation. Oncogene 23, 1136–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Schackmann, R. C. et al. Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. J. Clin. Invest. 121, 3176–3188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vigil, D. et al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Res. 72, 5338–5347 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Coniglio, S. J., Jou, T. S. & Symons, M. Rac1 protects epithelial cells against anoikis. J. Biol. Chem. 276, 28113–28120 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Cheng, T. L., Symons, M. & Jou, T. S. Regulation of anoikis by Cdc42 and Rac1. Exp. Cell Res. 295, 497–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Yu, S. J. et al. MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin. Cancer Res. 19, 1389–1399 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Vigneron, A. M., Ludwig, R. L. & Vousden, K. H. Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP. Genes Dev. 24, 2430–2439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Efklidou, S., Bailey, R., Field, N., Noursadeghi, M. & Collins, M. K. vFLIP from KSHV inhibits anoikis of primary endothelial cells. J. Cell Sci. 121, 450–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Toruner, M. et al. Antianoikis effect of nuclear factor-κB through up-regulated expression of osteoprotegerin, BCL-2, and IAP-1. J. Biol. Chem. 281, 8686–8696 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Mehrotra, S. et al. IAP regulation of metastasis. Cancer Cell 17, 53–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Park, S. H., Riley, P.t. & Frisch, S. M. Regulation of anoikis by deleted in breast cancer-1 (DBC1) through NF-κB. Apoptosis 18, 949–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kamarajugadda, S. et al. Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis. 4, e504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Smit, M. A. & Peeper, D. S. Zeb1 is required for TrkB-induced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene 30, 3735–3744 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Howe, E. N., Cochrane, D. R. & Richer, J. K. Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res. 13, R45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Howe, E. N., Cochrane, D. R., Cittelly, D. M. & Richer, J. K. miR-200c targets a NF-κB up-regulated TrkB/NTF3 autocrine signaling loop to enhance anoikis sensitivity in triple negative breast cancer. PLoS ONE 7, e49987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, X., Zhang, B., Gao, J., Wang, X. & Liu, Z. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis. J. Biol. Chem. 288, 32742–32752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ramachandra, M. et al. Restoration of transforming growth factor β signaling by functional expression of smad4 induces anoikis. Cancer Res. 62, 6045–6051 (2002).

    CAS  PubMed  Google Scholar 

  147. Lallemand, F. et al. Smad7 inhibits the survival nuclear factor κB and potentiates apoptosis in epithelial cells. Oncogene 20, 879–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Horowitz, J. C. et al. Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal 19, 761–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Taylor, M. A., Sossey-Alaoui, K., Thompson, C. L., Danielpour, D. & Schiemann, W. P. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J. Clin. Invest. 123, 150–163 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank V. Schafer, C. Versagli and R. Rayavarapu for critical reading of the manuscript. The authors thank the V Foundation for Cancer Research, Susan G. Komen for the Cure, the American Cancer Society, the Center for Rare and Neglected Disease at the University of Notre Dame, Indiana, USA, the Advanced Diagnostics & Therapeutics Initiative at the University of Notre Dame, and the Coleman Foundation for financial support. The authors apologize to any colleagues whose important contributions to the field were not included in this review owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary T. Schafer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchheit, C., Weigel, K. & Schafer, Z. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer 14, 632–641 (2014). https://doi.org/10.1038/nrc3789

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3789

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer