Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IGF binding proteins in cancer: mechanistic and clinical insights

Key Points

  • The insulin-like growth factor (IGF) binding proteins (IGFBPs) are a family of six proteins that function as transport proteins for IGF-I and IGF-II in the circulation and also regulate their access to the potentially oncogenic IGF-I receptor (IGF1R). 'Free' (unbound) IGFs have circulating half-lives of only a few minutes, whereas IGFBP-bound IGFs are much more stable.

  • IGFBPs modulate cell functions by both IGF-dependent mechanisms, which affect IGF1R signalling, and IGF-independent mechanisms, which do not involve changes in IGF1R signalling.

  • Many studies have examined the relationships between circulating IGFBP concentrations and cancer risk or prognosis, but few, if any, consistent associations have been found. By contrast, several studies suggest that tissue levels of IGFBPs or their mRNAs may be useful as prognostic markers.

  • No cancers have been attributed to IGFBP gene mutations, but some might be associated with epigenetic silencing of IGFBP gene expression (in particular, IGFBP3).

  • IGFBPs can function extracellularly but are also internalized into cells and can be transported into the nucleus. They inhibit tumour growth by promoting apoptosis and inhibiting cell proliferation, but in other circumstances they increase cell survival and stimulate proliferation.

  • Dichotomous effects on cell growth and survival are achieved by functional IGFBP interactions with many signalling systems, including both stimulatory and inhibitory cell-surface receptors (for example, the epidermal growth factor receptor and the transforming growth factor-β receptor, respectively), as well as nuclear receptors.

  • By regulating enzymes involved in sphingolipid metabolism, IGFBPs can affect the balance between growth-inhibitory lipids, such as ceramides, and growth-stimulatory lipids, such as sphingosine-1-phosphate. This could be a key mechanism by which IGFBP-3, IGFBP-5 and possibly other IGFBPs can regulate the balance between cell death and survival in response to certain cancer therapies.

  • These diverse properties of IGFBPs could make them, or pathways that they regulate, attractive targets for drug development.

Abstract

The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival — they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships between 'free' and IGFBP-bound IGFs in the circulation.
Figure 2: Proposed mechanisms for growth-inhibitory actions of IGFBPs.
Figure 3: Proposed scheme for the role of sphingolipids in mediating the dual growth-inhibitory and growth-stimulatory effects of IGFBPs in cancer.

Similar content being viewed by others

References

  1. Blumenthal, S. From insulin and insulin-like activity to the insulin superfamily of growth-promoting peptides: a 20th-century odyssey. Perspect. Biol. Med. 53, 491–508 (2010).

    CAS  PubMed  Google Scholar 

  2. Belfiore, A., Frasca, F., Pandini, G., Sciacca, L. & Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev. 30, 586–623 (2009).

    CAS  PubMed  Google Scholar 

  3. Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature Rev. Cancer 12, 159–169 (2012).

    CAS  Google Scholar 

  4. Siddle, K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front. Endocrinol. 3, 34 (2012).

    Google Scholar 

  5. Sarfstein, R. & Werner, H. Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. Endocrinology 154, 1672–1679 (2013).

    CAS  PubMed  Google Scholar 

  6. Daza, D. O., Sundstrom, G., Bergqvist, C. A., Duan, C. & Larhammar, D. Evolution of the insulin-like growth factor binding protein (IGFBP) family. Endocrinology 152, 2278–2289 (2011).

    CAS  PubMed  Google Scholar 

  7. Macqueen, D. J., Garcia de la Serrana, D. & Johnston, I. A. Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes. Mol. Biol. Evol. 30, 1060–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hwa, V., Oh, Y. & Rosenfeld, R. G. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr. Rev. 20, 761–787 (1999).

    CAS  PubMed  Google Scholar 

  9. Holbourn, K. P., Acharya, K. R. & Perbal, B. The CCN family of proteins: structure-function relationships. Trends Biochem. Sci. 33, 461–473 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baxter, R. C. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am. J. Physiol. Endocrinol. Metab. 278, E967–E976 (2000).

    CAS  PubMed  Google Scholar 

  11. Forbes, B. E., McCarthy, P. & Norton, R. S. Insulin-like growth factor binding proteins: a structural perspective. Front. Endocrinol. 3, 38 (2012).

    Google Scholar 

  12. Bach, L. A., Headey, S. J. & Norton, R. S. IGF-binding proteins—the pieces are falling into place. Trends Endocrinol. Metab. 16, 228–234 (2005).

    CAS  PubMed  Google Scholar 

  13. Payet, L. D., Wang, X. H., Baxter, R. C. & Firth, S. M. Amino- and carboxyl-terminal fragments of insulin-like growth factor (IGF) binding protein-3 cooperate to bind IGFs with high affinity and inhibit IGF receptor interactions. Endocrinology 144, 2797–2806 (2003).

    CAS  PubMed  Google Scholar 

  14. Kuang, Z. et al. Cooperativity of the N- and C-terminal domains of insulin-like growth factor (IGF) binding protein 2 in IGF binding. Biochemistry 46, 13720–13732 (2007).

    CAS  PubMed  Google Scholar 

  15. Baxter, R. C. Circulating binding proteins for the insulinlike growth factors. Trends Endocrinol. Metab. 4, 91–96 (1993).

    CAS  PubMed  Google Scholar 

  16. Rajaram, S., Baylink, D. J. & Mohan, S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr. Rev. 18, 801–831 (1997).

    CAS  PubMed  Google Scholar 

  17. Baxter, R. C. & Martin, J. L. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: determination by reconstitution and affinity-labeling. Proc. Natl Acad. Sci. USA 86, 6898–6902 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baxter, R. C. Circulating levels and molecular distribution of the acid-labile (α) subunit of the high molecular weight insulin-like growth factor-binding protein complex. J. Clin. Endocrinol. Metab. 70, 1347–1353 (1990).

    CAS  PubMed  Google Scholar 

  19. Twigg, S. M. & Baxter, R. C. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J. Biol. Chem. 273, 6074–6079 (1998).

    CAS  PubMed  Google Scholar 

  20. Baxter, R. C., Meka, S. & Firth, S. M. Molecular distribution of IGF binding protein-5 in human serum. J. Clin. Endocrinol. Metab. 87, 271–276 (2002).

    CAS  PubMed  Google Scholar 

  21. Juul, A. et al. Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J. Clin. Endocrinol. Metab. 80, 2534–2542 (1995).

    CAS  PubMed  Google Scholar 

  22. Baxter, R. C. & Martin, J. L. Radioimmunoassay of growth hormone-dependent insulinlike growth factor binding protein in human plasma. J. Clin. Invest. 78, 1504–1512 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Olivecrona, H. et al. Acute and short-term effects of growth hormone on insulin-like growth factors and their binding proteins: serum levels and hepatic messenger ribonucleic acid responses in humans. J. Clin. Endocrinol. Metab. 84, 553–560 (1999).

    CAS  PubMed  Google Scholar 

  24. Beattie, J. et al. Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study. Mol. Cell. Biochem. 307, 221–236 (2008).

    CAS  PubMed  Google Scholar 

  25. Nakamura, M. et al. Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability. Biochem. Biophys. Res. Commun. 333, 1011–1016 (2005).

    CAS  PubMed  Google Scholar 

  26. Mitsui, Y. et al. ADAM28 is overexpressed in human breast carcinomas: implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res. 66, 9913–9920 (2006).

    CAS  PubMed  Google Scholar 

  27. Rorive, S. et al. Matrix metalloproteinase-9 interplays with the IGFBP2-IGFII complex to promote cell growth and motility in astrocytomas. Glia 56, 1679–1690 (2008).

    PubMed  Google Scholar 

  28. Boldt, H. B. & Conover, C. A. Overexpression of pregnancy-associated plasma protein-A in ovarian cancer cells promotes tumor growth in vivo. Endocrinology 152, 1470–1478 (2011).

    CAS  PubMed  Google Scholar 

  29. Lewitt, M. S. & Baxter, R. C. Insulin-like growth factor-binding protein-1: a role in glucose counterregulation? Mol. Cell. Endocrinol. 79, C147–C152 (1991).

    CAS  PubMed  Google Scholar 

  30. Renehan, A. G., Frystyk, J. & Flyvbjerg, A. Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol. Metab. 17, 328–336 (2006).

    CAS  PubMed  Google Scholar 

  31. Crowe, F. L. et al. The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomarkers Prev. 18, 1333–1340 (2009).

    CAS  PubMed  Google Scholar 

  32. Rutanen, E. M. et al. Placental protein 12 (PP12) in primary liver cancer and cirrhosis. Tumour Biol. 5, 95–102 (1984).

    CAS  PubMed  Google Scholar 

  33. Greenall, S. A. et al. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer. J. Biol. Chem. 288, 59–68 (2013).

    CAS  PubMed  Google Scholar 

  34. Baxter, R. C. & Daughaday, W. H. Impaired formation of the ternary insulin-like growth factor-binding protein complex in patients with hypoglycemia due to nonislet cell tumors. J. Clin. Endocrinol. Metab. 73, 696–702 (1991).

    CAS  PubMed  Google Scholar 

  35. Wu, Y., Yakar, S., Zhao, L., Hennighausen, L. & LeRoith, D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res. 62, 1030–1035 (2002).

    CAS  PubMed  Google Scholar 

  36. Wu, Y. et al. Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res. 63, 4384–4388 (2003).

    CAS  PubMed  Google Scholar 

  37. Anzo, M. et al. Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression. Cancer Res. 68, 3342–3349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong, S. H. et al. Murine osteosarcoma primary tumour growth and metastatic progression is maintained after marked suppression of serum insulin-like growth factor I. Int. J. Cancer 124, 2042–2049 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dearth, R. K. et al. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis. BMC Cancer 11, 377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Silha, J. V. et al. Insulin-like growth factor (IGF) binding protein-3 attenuates prostate tumor growth by IGF-dependent and IGF-independent mechanisms. Endocrinology 147, 2112–2121 (2006).

    CAS  PubMed  Google Scholar 

  41. Oh, S. H. et al. Insulin-like growth factor binding protein-3 suppresses vascular endothelial growth factor expression and tumor angiogenesis in head and neck squamous cell carcinoma. Cancer Sci. 103, 1259–1266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mehta, H. H. et al. IGFBP-3 is a metastasis suppression gene in prostate cancer. Cancer Res. 71, 5154–5163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanety, H. et al. Serum insulin-like growth factor-binding protein-2 (IGFBP-2) is increased and IGFBP-3 is decreased in patients with prostate cancer: correlation with serum prostate-specific antigen. J. Clin. Endocrinol. Metab. 77, 229–233 (1993).

    CAS  PubMed  Google Scholar 

  44. Flyvbjerg, A., Mogensen, O., Mogensen, B. & Nielsen, O. S. Elevated serum insulin-like growth factor-binding protein 2 (IGFBP-2) and decreased IGFBP-3 in epithelial ovarian cancer: correlation with cancer antigen 125 and tumor-associated trypsin inhibitor. J. Clin. Endocrinol. Metab. 82, 2308–2313 (1997).

    CAS  PubMed  Google Scholar 

  45. Baron-Hay, S., Boyle, F., Ferrier, A. & Scott, C. Elevated serum insulin-like growth factor binding protein-2 as a prognostic marker in patients with ovarian cancer. Clin. Cancer Res. 10, 1796–1806 (2004).

    CAS  PubMed  Google Scholar 

  46. Li, Y. et al. Elevated serum antibodies against insulin-like growth factor-binding protein-2 allow detecting early-stage cancers: evidences from glioma and colorectal carcinoma studies. Ann. Oncol. 23, 2415–2422 (2012).

    CAS  PubMed  Google Scholar 

  47. Hanafusa, T. et al. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma. Cancer Lett. 176, 149–158 (2002).

    CAS  PubMed  Google Scholar 

  48. Choi, H. S., Lee, J. H., Park, J. G. & Lee, Y. I. Trichostatin A, a histone deacetylase inhibitor, activates the IGFBP-3 promoter by upregulating Sp1 activity in hepatoma cells: alteration of the Sp1/Sp3/HDAC1 multiprotein complex. Biochem. Biophys. Res. Commun. 296, 1005–1012 (2002).

    CAS  PubMed  Google Scholar 

  49. Lin, W. H., Martin, J. L., Marsh, D. J., Jack, M. M. & Baxter, R. C. Involvement of insulin-like growth factor-binding protein-3 in the effects of histone deacetylase inhibitor MS-275 in hepatoma cells. J. Biol. Chem. 286, 29540–29547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jee, C. D., Kim, M. A., Jung, E. J., Kim, J. & Kim, W. H. Identification of genes epigenetically silenced by CpG methylation in human gastric carcinoma. Eur. J. Cancer 45, 1282–1293 (2009).

    CAS  PubMed  Google Scholar 

  51. Zeng, L. et al. Insulin-like growth factor binding protein-3 (IGFBP-3) plays a role in the anti-tumorigenic effects of 5-Aza-2′-deoxycytidine (AZA) in breast cancer cells. Exp. Cell Res. 319, 2282–2295 (2013).

    CAS  PubMed  Google Scholar 

  52. Dar, A. A. et al. Functional modulation of IGF-binding protein-3 expression in melanoma. J. Invest. Dermatol. 130, 2071–2079 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Neumann, O. et al. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology 56, 1817–1827 (2012). This is the first evidence for a tumour-suppressive role for ALS of the circulating IGF–IGFBP complex.

    CAS  PubMed  Google Scholar 

  54. Wiley, A., Katsaros, D., Fracchioli, S. & Yu, H. Methylation of the insulin-like growth factor binding protein-3 gene and prognosis of epithelial ovarian cancer. Int. J. Gynecol. Cancer 16, 210–218 (2006).

    CAS  PubMed  Google Scholar 

  55. Perry, A. S. et al. In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer. Br. J. Cancer 96, 1587–1594 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ibanez de Caceres, I. et al. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene 29, 1681–1690 (2010).

    CAS  PubMed  Google Scholar 

  57. Sato, H. et al. Insulin-like growth factor binding protein-4 gene silencing in lung adenocarcinomas. Pathol. Int. 61, 19–27 (2011).

    CAS  PubMed  Google Scholar 

  58. Firth, S. M. & Baxter, R. C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 (2002).

    CAS  PubMed  Google Scholar 

  59. Jogie-Brahim, S., Feldman, D. & Oh, Y. Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr. Rev. 30, 417–437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamada, P. M. & Lee, K. W. Perspectives in mammalian IGFBP-3 biology: local versus systemic action. Am. J. Physiol. Cell. Physiol. 296, C954–976 (2009).

    CAS  PubMed  Google Scholar 

  61. Perks, C. M. & Holly, J. M. IGF binding proteins (IGFBPs) and regulation of breast cancer biology. J. Mammary Gland Biol. Neoplasia 13, 455–469 (2008).

    PubMed  Google Scholar 

  62. Headey, S. J., Leeding, K. S., Norton, R. S. & Bach, L. A. Contributions of the N- and C-terminal domains of IGF binding protein-6 to IGF binding. J. Mol. Endocrinol. 33, 377–386 (2004).

    CAS  PubMed  Google Scholar 

  63. Sitar, T., Popowicz, G. M., Siwanowicz, I., Huber, R. & Holak, T. A. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc. Natl Acad. Sci. USA 103, 13028–13033 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoeflich, A. et al. Insulin-like growth factor-binding protein 2 in tumorigenesis: protector or promoter? Cancer Res. 61, 8601–8610 (2001).

    CAS  PubMed  Google Scholar 

  65. Allan, G. J. et al. Cumulative mutagenesis of the basic residues in the 201–218 region of insulin-like growth factor (IGF)-binding protein-5 results in progressive loss of both IGF-I binding and inhibition of IGF-I biological action. Endocrinology 147, 338–349 (2006).

    CAS  PubMed  Google Scholar 

  66. Ryan, A. J. et al. Expression of a protease-resistant insulin-like growth factor-binding protein-4 inhibits tumour growth in a murine model of breast cancer. Br. J. Cancer 101, 278–286 (2009). This study gives good in vivo evidence that IGFBP-4 proteolysis, which results in decreased IGF binding, promotes tumour growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bach, L. A., Fu, P. & Yang, Z. Insulin-like growth factor-binding protein-6 and cancer. Clin. Sci. 124, 215–229 (2013).

    CAS  Google Scholar 

  68. Guix, M. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J. Clin. Invest. 118, 2609–2619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun, Y. et al. Role of insulin-like growth factor-1 signaling pathway in cisplatin-resistant lung cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 82, e563–e572 (2012).

    CAS  PubMed  Google Scholar 

  70. Goldstein, S., Moerman, E. J. & Baxter, R. C. Accumulation of insulin-like growth factor binding protein-3 in conditioned medium of human fibroblasts increases with chronologic age of donor and senescence in vitro. J. Cell. Physiol. 156, 294–302 (1993).

    CAS  PubMed  Google Scholar 

  71. Elzi, D. J. et al. Plasminogen activator inhibitor 1—insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc. Natl Acad. Sci. USA 109, 12052–12057 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Alami, N. et al. Recombinant human insulin-like growth factor-binding protein 3 inhibits tumor growth and targets the Akt pathway in lung and colon cancer models. Growth Horm. IGF Res. 18, 487–496 (2008).

    CAS  PubMed  Google Scholar 

  73. Ammoun, S. et al. Insulin-like growth factor-binding protein-1 (IGFBP-1) regulates human schwannoma proliferation, adhesion and survival. Oncogene 31, 1710–1722 (2012).

    CAS  PubMed  Google Scholar 

  74. Wang, G. K., Hu, L., Fuller, G. N. & Zhang, W. An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin α5 is essential for IGFBP2-induced cell mobility. J. Biol. Chem. 281, 14085–14091 (2006).

    CAS  PubMed  Google Scholar 

  75. Oh, S. H. et al. Antimetastatic activity of insulin-like growth factor binding protein-3 in lung cancer is mediated by insulin-like growth factor-independent urokinase-type plasminogen activator inhibition. Mol. Cancer Ther. 5, 2685–2695 (2006).

    CAS  PubMed  Google Scholar 

  76. Tripathi, G. et al. IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. FASEB J. 23, 2616–2626 (2009).

    CAS  PubMed  Google Scholar 

  77. Huang, S. S. et al. Cellular growth inhibition by IGFBP-3 and TGF-β1 requires LRP-1. FASEB J. 17, 2068–2081 (2003).

    CAS  PubMed  Google Scholar 

  78. Leal, S. M., Huang, S. S. & Huang, J. S. Interactions of high affinity insulin-like growth factor-binding proteins with the type V transforming growth factor-β receptor in mink lung epithelial cells. J. Biol. Chem. 274, 6711–6717 (1999).

    CAS  PubMed  Google Scholar 

  79. Lee, S. H. et al. Loss of core fucosylation of low-density lipoprotein receptor-related protein-1 impairs its function, leading to the upregulation of serum levels of insulin-like growth factor-binding protein 3 in Fut8−/− mice. J. Biochem. 139, 391–398 (2006).

    CAS  PubMed  Google Scholar 

  80. Lee, K. W. et al. Cellular internalization of insulin-like growth factor binding protein-3: distinct endocytic pathways facilitate re-uptake and nuclear localization. J. Biol. Chem. 279, 469–476 (2004).

    CAS  PubMed  Google Scholar 

  81. Singh, B., Charkowicz, D. & Mascarenhas, D. Insulin-like growth factor-independent effects mediated by a C-terminal metal-binding domain of insulin-like growth factor binding protein-3. J. Biol. Chem. 279, 477–487 (2004).

    CAS  PubMed  Google Scholar 

  82. Micutkova, L. et al. Analysis of the cellular uptake and nuclear delivery of insulin-like growth factor binding protein-3 in human osteosarcoma cells. Int. J. Cancer 130, 1544–1557 (2012). This is a definitive study of mechanisms of IGFBP-3 intracellular trafficking.

    CAS  PubMed  Google Scholar 

  83. Li, W. et al. Nuclear transport of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in opossum kidney cells. Endocrinology 138, 1763–1766 (1997).

    CAS  PubMed  Google Scholar 

  84. Gonias, S. L. & Campana, W. M. LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am. J. Pathol. 184, 18–27 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Andress, D. L. Insulin-like growth factor-binding protein-5 (IGFBP-5) stimulates phosphorylation of the IGFBP-5 receptor. Am. J. Physiol. 274, E744–E750 (1998).

    CAS  PubMed  Google Scholar 

  86. Jurgeit, A. et al. Insulin-like growth factor-binding protein-5 enters vesicular structures but not the nucleus. Traffic 8, 1815–1828 (2007).

    CAS  PubMed  Google Scholar 

  87. Yamaguchi, Y., Yasuoka, H., Stolz, D. B. & Feghali-Bostwick, C. A. Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J. Cell. Mol. Med. 15, 957–969 (2011).

    CAS  PubMed  Google Scholar 

  88. Schedlich, L. J. et al. Nuclear import of insulin-like growth factor-binding protein-3 and -5 is mediated by the importin β subunit. J. Biol. Chem. 275, 23462–23470 (2000).

    CAS  PubMed  Google Scholar 

  89. Seligson, D. B. et al. IGFBP-3 nuclear localization predicts human prostate cancer recurrence. Horm. Cancer 4, 12–23 (2013).

    CAS  PubMed  Google Scholar 

  90. Santer, F. R. et al. Nuclear insulin-like growth factor binding protein-3 induces apoptosis and is targeted to ubiquitin/proteasome-dependent proteolysis. Cancer Res. 66, 3024–3033 (2006).

    CAS  PubMed  Google Scholar 

  91. Iosef, C., Gkourasas, T., Jia, C. Y., Li, S. S. & Han, V. K. A functional nuclear localization signal in insulin-like growth factor binding protein-6 mediates its nuclear import. Endocrinology 149, 1214–1226 (2008).

    CAS  PubMed  Google Scholar 

  92. Terrien, X. et al. Intracellular colocalization and interaction of IGF-binding protein-2 with the cyclin-dependent kinase inhibitor p21CIP1/WAF1 during growth inhibition. Biochem. J. 392, 457–465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Miyako, K. et al. PAPA-1 Is a nuclear binding partner of IGFBP-2 and modulates its growth-promoting actions. Mol. Endocrinol. 23, 169–175 (2009).

    CAS  PubMed  Google Scholar 

  94. Villani, R. M., Adolphe, C., Palmer, J., Waters, M. J. & Wainwright, B. J. Patched1 inhibits epidermal progenitor cell expansion and basal cell carcinoma formation by limiting Igfbp2 activity. Cancer Prev. Res. (Phila.) 3, 1222–1234 (2010).

    CAS  Google Scholar 

  95. Azar, W. J., Zivkovic, S., Werther, G. A. & Russo, V. C. IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene 33, 578–588 (2014). This paper describes the mechanism of IGFBP-2 nuclear import and its potential tumorigenic role through VEGF induction.

    CAS  PubMed  Google Scholar 

  96. Shang, Y., Baumrucker, C. R. & Green, M. H. Signal relay by retinoic acid receptors α and β in the retinoic acid-induced expression of insulin-like growth factor-binding protein-3 in breast cancer cells. J. Biol. Chem. 274, 18005–18010 (1999).

    CAS  PubMed  Google Scholar 

  97. Glantschnig, H., Varga, F. & Klaushofer, K. Thyroid hormone and retinoic acid induce the synthesis of insulin-like growth factor-binding protein-4 in mouse osteoblastic cells. Endocrinology 137, 281–286 (1996).

    CAS  PubMed  Google Scholar 

  98. Higo, H., Duan, C., Clemmons, D. R. & Herman, B. Retinoic acid inhibits cell growth in HPV negative cervical carcinoma cells by induction of insulin-like growth factor binding protein-5 (IGFBP-5) secretion. Biochem. Biophys. Res. Commun. 239, 706–709 (1997).

    CAS  PubMed  Google Scholar 

  99. Uray, I. P. et al. Rexinoid-induced expression of IGFBP-6 requires RARβ-dependent permissive cooperation of retinoid receptors and AP-1. J. Biol. Chem. 284, 345–353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Matilainen, M., Malinen, M., Saavalainen, K. & Carlberg, C. Regulation of multiple insulin-like growth factor binding protein genes by 1α, 25-dihydroxyvitamin D3. Nucleic Acids Res. 33, 5521–5532 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Krishnan, A. V. et al. Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer. J. Steroid Biochem. Mol. Biol. 103, 694–702 (2007).

    CAS  PubMed  Google Scholar 

  102. Brosseau, C., Pirianov, G. & Colston, K. W. Role of insulin-like growth factor binding protein-3 in 1, 25-dihydroxyvitamin-d 3 -induced breast cancer cell apoptosis. Int. J. Cell Biol. 2013, 960378 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, B. et al. Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-α regulate transcriptional signaling and apoptosis. J. Biol. Chem. 275, 33607–33613 (2000). Following this landmark study, functional interactions between several nuclear hormone receptors and IGFBPs are now well established.

    CAS  PubMed  Google Scholar 

  104. Ikezoe, T. et al. Insulin-like growth factor binding protein-3 antagonizes the effects of retinoids in myeloid leukemia cells. Blood 104, 237–242 (2004).

    CAS  PubMed  Google Scholar 

  105. Schedlich, L. J., Muthukaruppan, A., O'Han, M. K. & Baxter, R. C. Insulin-like growth factor binding protein-5 interacts with the vitamin D receptor and modulates the vitamin D response in osteoblasts. Mol. Endocrinol. 21, 2378–2390 (2007).

    CAS  PubMed  Google Scholar 

  106. Cui, J. et al. A novel interaction between insulin-like growth factor binding protein-6 and the vitamin D receptor inhibits the role of vitamin D3 in osteoblast differentiation. Mol. Cell. Endocrinol. 338, 84–92 (2011).

    CAS  PubMed  Google Scholar 

  107. Schedlich, L. J. et al. Molecular basis of the interaction between IGFBP-3 and retinoid X receptor: role in modulation of RAR-signaling. Arch. Biochem. Biophys. 465, 359–369 (2007).

    CAS  PubMed  Google Scholar 

  108. Qiu, J., Ma, X. L., Wang, X., Chen, H. & Huang, B. R. Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation. Mol. Cell. Biochem. 361, 197–208 (2012).

    CAS  PubMed  Google Scholar 

  109. Imai, Y. et al. Substitutions for hydrophobic amino acids in the N-terminal domains of IGFBP-3 and -5 markedly reduce IGF-I binding and alter their biologic actions. J. Biol. Chem. 275, 18188–18194 (2000).

    CAS  PubMed  Google Scholar 

  110. Yan, X., Forbes, B. E., McNeil, K. A., Baxter, R. C. & Firth, S. M. Role of N- and C-terminal residues of insulin-like growth factor (IGF)-binding protein-3 in regulating IGF complex formation and receptor activation. J. Biol. Chem. 279, 53232–53240 (2004).

    CAS  PubMed  Google Scholar 

  111. Fu, P., Thompson, J. A. & Bach, L. A. Promotion of cancer cell migration: an insulin-like growth factor (IGF)-independent action of IGF-binding protein-6. J. Biol. Chem. 282, 22298–22306 (2007).

    CAS  PubMed  Google Scholar 

  112. Jin, L. & Li, Y. Structural and functional insights into nuclear receptor signaling. Adv. Drug Deliv. Rev. 62, 1218–1226 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zappala, G. et al. Induction of apoptosis in human prostate cancer cells by insulin-like growth factor binding protein-3 does not require binding to retinoid X receptor-α. Endocrinology 149, 1802–1812 (2008).

    CAS  PubMed  Google Scholar 

  114. Lee, K. W. et al. Contribution of the orphan nuclear receptor Nur77 to the apoptotic action of IGFBP-3. Carcinogenesis 28, 1653–1658 (2007).

    CAS  PubMed  Google Scholar 

  115. Martin, J. L. & Baxter, R. C. Transforming growth factor-β stimulates production of insulin-like growth factor-binding protein-3 by human skin fibroblasts. Endocrinology 128, 1425–1433 (1991).

    CAS  PubMed  Google Scholar 

  116. McCaig, C. et al. Differential interactions between IGFBP-3 and transforming growth factor-β (TGF-β) in normal versus cancerous breast epithelial cells. Br. J. Cancer 86, 1963–1969 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schedlich, L. J., Yenson, V. M. & Baxter, R. C. TGF-beta-induced expression of IGFBP-3 regulates IGF1R signaling in human osteosarcoma cells. Mol. Cell. Endocrinol. 377, 56–64 (2013).

    CAS  PubMed  Google Scholar 

  118. Dong, F., Wu, H. B., Hong, J. & Rechler, M. M. Insulin-like growth factor binding protein-2 mediates the inhibition of DNA synthesis by transforming growth factor-β in mink lung epithelial cells. J. Cell. Physiol. 190, 63–73 (2002).

    CAS  PubMed  Google Scholar 

  119. Ortiz, C. O. et al. Transforming growth factor-β regulation of the insulin-like growth factor binding protein-4 protease system in cultured human osteoblasts. J. Bone Miner. Res. 18, 1066–1072 (2003).

    CAS  PubMed  Google Scholar 

  120. Amini Nik, S., Ebrahim, R. P., Van Dam, K., Cassiman, J. J. & Tejpar, S. TGF-β modulates β-Catenin stability and signaling in mesenchymal proliferations. Exp. Cell Res. 313, 2887–2895 (2007).

    CAS  PubMed  Google Scholar 

  121. Canalis, E. & Gabbitas, B. Skeletal growth factors regulate the synthesis of insulin-like growth factor binding protein-5 in bone cell cultures. J. Biol. Chem. 270, 10771–10776 (1995).

    CAS  PubMed  Google Scholar 

  122. Bushman, T. L. & Kuemmerle, J. F. IGFBP-3 and IGFBP-5 production by human intestinal muscle: reciprocal regulation by endogenous TGF-β1. Am. J. Physiol. 275, G1282–1290 (1998).

    CAS  PubMed  Google Scholar 

  123. Lochrie, J. D. et al. Insulin-like growth factor binding protein (IGFBP)-5 is upregulated during both differentiation and apoptosis in primary cultures of mouse mammary epithelial cells. J. Cell. Physiol. 207, 471–479 (2006).

    CAS  PubMed  Google Scholar 

  124. Fanayan, S., Firth, S. M. & Baxter, R. C. Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells. Relationship to transforming growth factor-β 1 signaling. J. Biol. Chem. 277, 7255–7261 (2002).

    CAS  PubMed  Google Scholar 

  125. Kuemmerle, J. F., Murthy, K. S. & Bowers, J. G. IGFBP-3 activates TGF-β receptors and directly inhibits growth in human intestinal smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G795–802 (2004).

    CAS  PubMed  Google Scholar 

  126. Forbes, K., Souquet, B., Garside, R., Aplin, J. D. & Westwood, M. Transforming growth factor-β (TGFβ) receptors I/II differentially regulate TGFβ1 and IGF-binding protein-3 mitogenic effects in the human placenta. Endocrinology 151, 1723–1731 (2010).

    CAS  PubMed  Google Scholar 

  127. de Silva, H. C., Firth, S. M., Twigg, S. M. & Baxter, R. C. Interaction between IGF binding protein-3 and TGFβ in the regulation of adipocyte differentiation. Endocrinology 153, 4799–4807 (2012).

    CAS  PubMed  Google Scholar 

  128. Zhong, Y. et al. IGF binding protein 3 exerts its ligand-independent action by antagonizing BMP in zebrafish embryos. J. Cell Sci. 124, 1925–1935 (2011).

    CAS  PubMed  Google Scholar 

  129. Ingermann, A. R. et al. Identification of a novel cell death receptor mediating IGFBP-3-induced anti-tumor effects in breast and prostate cancer. J. Biol. Chem. 285, 30233–30246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Harada, A., Jogie-Brahim, S. & Oh, Y. Tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone suppresses a newly identified anti-tumor IGFBP-3/IGFBP-3R system in lung cancer cells. Lung Cancer 80, 270–277 (2013).

    PubMed  Google Scholar 

  131. Jones, J. I., D'Ercole, A. J., Camacho-Hubner, C. & Clemmons, D. R. Phosphorylation of insulin-like growth factor (IGF)-binding protein 1 in cell culture and in vivo: effects on affinity for IGF-I. Proc. Natl Acad. Sci. USA 88, 7481–7485 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Abu Shehab, M., Iosef, C., Wildgruber, R., Sardana, G. & Gupta, M. B. Phosphorylation of IGFBP-1 at discrete sites elicits variable effects on IGF-I receptor autophosphorylation. Endocrinology 154, 1130–1143 (2013).

    CAS  PubMed  Google Scholar 

  133. Jones, J. I. et al. Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the α 5 β 1 integrin by means of its Arg-Gly-Asp sequence. Proc. Natl Acad. Sci. USA 90, 10553–10557 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, X. & Yee, D. Insulin-like growth factor binding protein-1 (IGFBP-1) inhibits breast cancer cell motility. Cancer Res. 62, 4369–4375 (2002).

    CAS  PubMed  Google Scholar 

  135. Leu, J. I., Crissey, M. A. & Taub, R. Massive hepatic apoptosis associated with TGF-β1 activation after Fas ligand treatment of IGF binding protein-1-deficient mice. J. Clin. Invest. 111, 129–139 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yee, D., Jackson, J. G., Kozelsky, T. W. & Figueroa, J. A. Insulin-like growth factor binding protein 1 expression inhibits insulin-like growth factor I action in MCF-7 breast cancer cells. Cell Growth Differ. 5, 73–77 (1994).

    CAS  PubMed  Google Scholar 

  137. Durai, R. et al. Biology of insulin-like growth factor binding protein-4 and its role in cancer (review). Int. J. Oncol. 28, 1317–1325 (2006).

    CAS  PubMed  Google Scholar 

  138. Perks, C. M., Bowen, S., Gill, Z. P., Newcomb, P. V. & Holly, J. M. Differential IGF-independent effects of insulin-like growth factor binding proteins (1-6) on apoptosis of breast epithelial cells. J. Cell Biochem. 75, 652–664 (1999).

    CAS  PubMed  Google Scholar 

  139. Bartling, B. et al. Insulin-like growth factor binding proteins-2 and -4 enhance the migration of human CD34-/CD133+ hematopoietic stem and progenitor cells. Int. J. Mol. Med. 25, 89–96 (2010).

    CAS  PubMed  Google Scholar 

  140. Mosig, R. A. et al. IGFBP-4 tumor and serum levels are increased across all stages of epithelial ovarian cancer. J. Ovarian Res. 5, 3 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Romero, D. et al. Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res. 71, 3482–3493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Fu, P., Yang, Z. & Bach, L. A. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J. Biol. Chem. 288, 29890–29900 (2013). This study defines prohibitin 2 as a new ligand for IGFBP-6 that may be important in its pro-migratory activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Diehl, D. et al. IGFBP-2 overexpression reduces the appearance of dysplastic aberrant crypt foci and inhibits growth of adenomas in chemically induced colorectal carcinogenesis. Int. J. Cancer 124, 2220–2225 (2009).

    CAS  PubMed  Google Scholar 

  144. Dunlap, S. M. et al. Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc. Natl Acad. Sci. USA 104, 11736–11741 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chakrabarty, S. & Kondratick, L. Insulin-like growth factor binding protein-2 stimulates proliferation and activates multiple cascades of the mitogen-activated protein kinase pathways in NIH-OVCAR3 human epithelial ovarian cancer cells. Cancer Biol. Ther. 5, 189–197 (2006).

    CAS  PubMed  Google Scholar 

  146. Chatterjee, S., Park, E. S. & Soloff, M. S. Proliferation of DU145 prostate cancer cells is inhibited by suppressing insulin-like growth factor binding protein-2. Int. J. Urol. 11, 876–884 (2004).

    CAS  PubMed  Google Scholar 

  147. Miyake, H. et al. Introduction of insulin-like growth factor binding protein-2 gene into human bladder cancer cells enhances their metastatic potential. Oncol. Rep. 13, 341–345 (2005).

    CAS  PubMed  Google Scholar 

  148. Fukushima, T., Tezuka, T., Shimomura, T., Nakano, S. & Kataoka, H. Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J. Biol. Chem. 282, 18634–18644 (2007).

    CAS  PubMed  Google Scholar 

  149. Russo, V. C. et al. Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion. Endocrinology 146, 4445–4455 (2005).

    CAS  PubMed  Google Scholar 

  150. Song, S. W. et al. IIp45, an insulin-like growth factor binding protein 2 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion. Proc. Natl Acad. Sci. USA 100, 13970–13975 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Levitt, R. J., Georgescu, M. M. & Pollak, M. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2. Biochem. Biophys. Res. Commun. 336, 1056–1061 (2005).

    CAS  PubMed  Google Scholar 

  152. Mehrian-Shai, R. et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc. Natl Acad. Sci. USA 104, 5563–5568 (2007). This study demonstrates the functional link between IGFBP-2 and PTEN in glioblastoma and other cancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ben-Shmuel, A. Shvab, A., Gavert, N., Brabletz, T. & Ben-Ze'ev, A. Global analysis of L1-transcriptomes identified IGFBP-2 as a target of ezrin and NF-κB signaling that promotes colon cancer progression. Oncogene 32, 3220–3230 (2013).

    CAS  PubMed  Google Scholar 

  154. Sehgal, P. et al. Regulation of protumorigenic pathways by insulin like growth factor binding protein2 and its association along with β-catenin in breast cancer lymph node metastasis. Mol. Cancer 12, 63 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Butt, A. J., Dickson, K. A., McDougall, F. & Baxter, R. C. Insulin-like growth factor-binding protein-5 inhibits the growth of human breast cancer cells in vitro and in vivo. J. Biol. Chem. 278, 29676–29685 (2003).

    CAS  PubMed  Google Scholar 

  156. Tanno, B. et al. Silencing of endogenous IGFBP-5 by micro RNA interference affects proliferation, apoptosis and differentiation of neuroblastoma cells. Cell Death Differ. 12, 213–223 (2005).

    CAS  PubMed  Google Scholar 

  157. McCaig, C., Perks, C. M. & Holly, J. M. Intrinsic actions of IGFBP-3 and IGFBP-5 on Hs578T breast cancer epithelial cells: inhibition or accentuation of attachment and survival is dependent upon the presence of fibronectin. J. Cell Sci. 115, 4293–4303 (2002).

    CAS  PubMed  Google Scholar 

  158. Johnson, S. K. & Haun, R. S. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth. World J. Gastroenterol. 15, 3355–3366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu, X. L. et al. Tumor-associated retinal astrocytes promote retinoblastoma cell proliferation through production of IGFBP-5. Am. J. Pathol. 177, 424–435 (2010). This is an interesting demonstration of a tumorigenic role for IGFBP-5 in retinoblastoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sokolovic, A., Sokolovic, M., Boers, W., Elferink, R. P. & Bosma, P. J. Insulin-like growth factor binding protein 5 enhances survival of LX2 human hepatic stellate cells. Fibrogenesis Tissue Repair 3, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  161. Cobb, L. J. et al. Partitioning of IGFBP-5 actions in myogenesis: IGF-independent anti-apoptotic function. J. Cell Sci. 117, 1737–1746 (2004).

    CAS  PubMed  Google Scholar 

  162. Miyake, H., Pollak, M. & Gleave, M. E. Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. Cancer Res. 60, 3058–3064 (2000).

    CAS  PubMed  Google Scholar 

  163. Sureshbabu, A. et al. IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells. J. Cell Sci. 125, 1693–1705 (2012).

    CAS  PubMed  Google Scholar 

  164. McCaig, C., Perks, C. M. & Holly, J. M. Signalling pathways involved in the direct effects of IGFBP-5 on breast epithelial cell attachment and survival. J. Cell Biochem. 84, 784–794 (2002).

    PubMed  Google Scholar 

  165. Pyne, N. J. & Pyne, S. Sphingosine 1-phosphate and cancer. Nature Rev. Cancer 10, 489–503 (2010).

    CAS  Google Scholar 

  166. Wang, H., Zhang, W. & Fuller, G. N. Overexpression of IGFBP5, but not IGFBP3, correlates with the histologic grade of human diffuse glioma: a tissue microarray and immunohistochemical study. Technol. Cancer Res. Treat. 5, 195–199 (2006).

    CAS  PubMed  Google Scholar 

  167. Wang, H., Rosen, D. G., Fuller, G. N., Zhang, W. & Liu, J. Insulin-like growth factor-binding protein 2 and 5 are differentially regulated in ovarian cancer of different histologic types. Mod. Pathol. 19, 1149–1156 (2006).

    CAS  PubMed  Google Scholar 

  168. Li, X., Cao, X., Zhang, W. & Feng, Y. Expression level of insulin-like growth factor binding protein 5 mRNA is a prognostic factor for breast cancer. Cancer Sci. 98, 1592–1596 (2007).

    CAS  PubMed  Google Scholar 

  169. Liang, P. I. et al. IGFBP-5 overexpression as a poor prognostic factor in patients with urothelial carcinomas of upper urinary tracts and urinary bladder. J. Clin. Pathol. 66, 573–582 (2013).

    CAS  PubMed  Google Scholar 

  170. De Mellow, J. S. & Baxter, R. C. Growth hormone-dependent insulin-like growth factor (IGF) binding protein both inhibits and potentiates IGF-I-stimulated DNA synthesis in human skin fibroblasts. Biochem. Biophys. Res. Commun. 156, 199–204 (1988).

    CAS  PubMed  Google Scholar 

  171. Chen, J. C. et al. Insulin-like growth factor-binding protein enhancement of insulin-like growth factor-I (IGF-I)-mediated DNA synthesis and IGF-I binding in a human breast carcinoma cell line. J. Cell. Physiol. 158, 69–78 (1994).

    CAS  PubMed  Google Scholar 

  172. Blum, W. F. et al. Insulin-like growth factor I (IGF-I)-binding protein complex is a better mitogen than free IGF-I. Endocrinology 125, 766–772 (1989).

    CAS  PubMed  Google Scholar 

  173. Martin, J. L., Lin, M. Z., McGowan, E. M. & Baxter, R. C. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J. Biol. Chem. 284, 25542–25552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Heazlewood, S. Y. et al. Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 11, 782–792 (2013).

    CAS  PubMed  Google Scholar 

  175. Conover, C. A. Potentiation of insulin-like growth factor (IGF) action by IGF-binding protein-3: studies of underlying mechanism. Endocrinology 130, 3191–3199 (1992).

    CAS  PubMed  Google Scholar 

  176. Granata, R. et al. Dual effects of IGFBP-3 on endothelial cell apoptosis and survival: involvement of the sphingolipid signaling pathways. FASEB J. 18, 1456–1458 (2004). This study showed that IGFBP-3 activates SPHK, which may be central to its tumorigenic role.

    CAS  PubMed  Google Scholar 

  177. Sukocheva, O. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J. Cell Biol. 173, 301–310 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Martin, J. L., De Silva, H. C., Lin, M. Z. & Baxter, R. C. Inhibition of insulin-like growth factor binding protein-3 signaling through sphingosine kinase 1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol. Cancer Ther. 13, 316–328 (2014). This study establishes a link between IGFBP-3, SPHK and EGFR in TNBC, which might have therapeutic value.

    CAS  PubMed  Google Scholar 

  179. Butt, A. J. et al. Insulin-like growth factor binding protein-3 expression is associated with growth stimulation of T47D human breast cancer cells: the role of altered epidermal growth factor signaling. J. Clin. Endocrinol. Metab. 89, 1950–1956 (2004).

    CAS  PubMed  Google Scholar 

  180. Kim, W. Y. et al. Differential impacts of insulin-like growth factor-binding protein-3 (IGFBP-3) in epithelial IGF-induced lung cancer development. Endocrinology 152, 2164–2173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Takaoka, M. et al. Epidermal growth factor receptor regulates aberrant expression of insulin-like growth factor-binding protein 3. Cancer Res. 64, 7711–7723 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Perks, C. M., McCaig, C., Clarke, J. B., Clemmons, D. R. & Holly, J. M. A non-IGF binding mutant of IGFBP-3 modulates cell function in breast epithelial cells. Biochem. Biophys. Res. Commun. 294, 988–994 (2002).

    CAS  PubMed  Google Scholar 

  183. Kielczewski, J. L. et al. Free insulin-like growth factor binding protein-3 (IGFBP-3) reduces retinal vascular permeability in association with a reduction of acid sphingomyelinase (ASMase). Invest. Ophthalmol. Vis. Sci. 52, 8278–8286 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kielczewski, J. L. et al. Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation. Circ. Res. 105, 897–905 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Perks, C. M., Burrows, C. & Holly, J. M. Intrinsic, pro-apoptotic effects of IGFBP-3 on breast cancer cells are reversible: involvement of PKA, Rho, and ceramide. Front. Endocrinol. 2, 13 (2011).

    Google Scholar 

  186. Chudakova, D. A. et al. Integrin-associated Lyn kinase promotes cell survival by suppressing acid sphingomyelinase activity. J. Biol. Chem. 283, 28806–28816 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Grkovic, S. et al. IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene 32, 2412–2420 (2013).

    CAS  PubMed  Google Scholar 

  188. Young, M. M., Kester, M. & Wang, H. G. Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J. Lipid Res. 54, 5–19 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Buckbinder, L. et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377, 646–649 (1995).

    CAS  PubMed  Google Scholar 

  190. Vikhanskaya, F., Lee, M. K., Mazzoletti, M., Broggini, M. & Sabapathy, K. Cancer-derived p53 mutants suppress p53-target gene expression—potential mechanism for gain of function of mutant p53. Nucleic Acids Res. 35, 2093–2104 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Grimberg, A. et al. p53-Dependent and p53-independent induction of insulin-like growth factor binding protein-3 by deoxyribonucleic acid damage and hypoxia. J. Clin. Endocrinol. Metab. 90, 3568–3574 (2005).

    CAS  PubMed  Google Scholar 

  192. Williams, A. C. et al. Increased p53-dependent apoptosis by the insulin-like growth factor binding protein IGFBP-3 in human colonic adenoma-derived cells. Cancer Res. 60, 22–27 (2000).

    CAS  PubMed  Google Scholar 

  193. Butt, A. J., Firth, S. M., King, M. A. & Baxter, R. C. Insulin-like growth factor-binding protein-3 modulates expression of Bax and Bcl-2 and potentiates p53-independent radiation-induced apoptosis in human breast cancer cells. J. Biol. Chem. 275, 39174–39181 (2000).

    CAS  PubMed  Google Scholar 

  194. Hollowood, A. D. et al. IGFBP-3 prolongs the p53 response and enhances apoptosis following UV irradiation. Int. J. Cancer 88, 336–341 (2000).

    CAS  PubMed  Google Scholar 

  195. Yoshino, K. et al. IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous esophageal cancer cells. Biochem. Biophys. Res. Commun. 404, 1070–1075 (2011).

    CAS  PubMed  Google Scholar 

  196. Zhao, L. et al. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3. J. Transl. Med. 10, 249 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Han, J., Jogie-Brahim, S., Harada, A. & Oh, Y. Insulin-like growth factor-binding protein-3 suppresses tumor growth via activation of caspase-dependent apoptosis and cross-talk with NF-κB signaling. Cancer Lett. 307, 200–210 (2011).

    CAS  PubMed  Google Scholar 

  198. Lin, M. Z., Marzec, K. A., Martin, J. L. & Baxter, R. C. The role of insulin-like growth factor binding protein-3 in the breast cancer cell response to DNA-damaging agents. Oncogene 33, 85–96 (2014). This study implicates IGFBP-3 in the repair of DNA double-strand breaks, which possibly contributes to chemoresistance in some cancers.

    CAS  PubMed  Google Scholar 

  199. Liccardi, G., Hartley, J. A. & Hochhauser, D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 71, 1103–1114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Friedmann, B. J. et al. Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol. Cancer Ther. 5, 209–218 (2006).

    CAS  PubMed  Google Scholar 

  201. Dittmann, K., Mayer, C., Kehlbach, R. & Rodemann, H. P. Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol. Cancer 7, 69 (2008).

    PubMed  PubMed Central  Google Scholar 

  202. Schedlich, L. J., Nilsen, T., John, A. P., Jans, D. A. & Baxter, R. C. Phosphorylation of insulin-like growth factor binding protein-3 by deoxyribonucleic acid-dependent protein kinase reduces ligand binding and enhances nuclear accumulation. Endocrinology 144, 1984–1993 (2003).

    CAS  PubMed  Google Scholar 

  203. Cobb, L. J., Liu, B., Lee, K. W. & Cohen, P. Phosphorylation by DNA-dependent protein kinase is critical for apoptosis induction by insulin-like growth factor binding protein-3. Cancer Res. 66, 10878–10884 (2006).

    CAS  PubMed  Google Scholar 

  204. Zhang, Q. & Steinle, J. J. DNA-PK phosphorylation of IGFBP-3 is required to prevent apoptosis in retinal endothelial cells cultured in high glucose. Invest. Ophthalmol. Vis. Sci. 54, 3052–3057 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Frystyk, J. Utility of free IGF-I measurements. Pituitary 10, 181–187 (2007).

    CAS  PubMed  Google Scholar 

  206. Marimuthu, A. et al. Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome. Biochim. Biophys. Acta 1834, 2308–2316 (2013).

    CAS  PubMed  Google Scholar 

  207. Xue, A., Scarlett, C. J., Jackson, C. J., Allen, B. J. & Smith, R. C. Prognostic significance of growth factors and the urokinase-type plasminogen activator system in pancreatic ductal adenocarcinoma. Pancreas 36, 160–167 (2008).

    CAS  PubMed  Google Scholar 

  208. Takahashi, M. et al. Altered expression of members of the IGF-axis in clear cell renal cell carcinoma. Int. J. Oncol. 26, 923–931 (2005).

    CAS  PubMed  Google Scholar 

  209. Xi, Y. et al. Association of insulin-like growth factor binding protein-3 expression with melanoma progression. Mol. Cancer Ther. 5, 3078–3084 (2006).

    CAS  PubMed  Google Scholar 

  210. Hansel, D. E. et al. Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms. Clin. Cancer Res. 10, 6152–6158 (2004).

    CAS  PubMed  Google Scholar 

  211. Shao, Z. M. et al. IGFBP-3 gene expression and estrogen receptor status in human breast carcinoma. Cancer Res. 52, 5100–5103 (1992).

    CAS  PubMed  Google Scholar 

  212. Figueroa, J. A., Jackson, J. G., McGuire, W. L., Krywicki, R. F. & Yee, D. Expression of insulin-like growth factor binding proteins in human breast cancer correlates with estrogen receptor status. J. Cell Biochem. 52, 196–205 (1993).

    CAS  PubMed  Google Scholar 

  213. Rocha, R. L. et al. Correlation of insulin-like growth factor-binding protein-3 messenger RNA with protein expression in primary breast cancer tissues: detection of higher levels in tumors with poor prognostic features. J. Natl Cancer Inst. 88, 601–606 (1996).

    CAS  PubMed  Google Scholar 

  214. Yu, H. et al. Associations between insulin-like growth factors and their binding proteins and other prognostic indicators in breast cancer. Br. J. Cancer 74, 1242–1247 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Ren, Z. et al. IGFBP3 mRNA expression in benign and malignant breast tumors. Breast Cancer Res. 9, R2 (2007).

    PubMed  PubMed Central  Google Scholar 

  216. Mu, L. et al. Peptide concentrations and mRNA expression of IGF-I, IGF-II and IGFBP-3 in breast cancer and their associations with disease characteristics. Breast Cancer Res. Treat. 115, 151–162 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges project grants from the National Health & Medical Research Council, the Australian Research Council, and the Cancer Council New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Baxter.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Association between circulating levels of IGFBPs and cancer risk or prognosis (PDF 151 kb)

Supplementary information S2 (table)

Association between tumor levels of IGFBPs and cancer prognosis (PDF 139 kb)

Glossary

Signal peptide

A short, amino-terminal peptide sequence that directs newly synthesized proteins that are destined for secretion into the secretory pathway.

Non-islet cell tumour hypoglycaemia

(NICTH). A condition of tumour-associated low blood glucose that is caused by hypersecretion of insulin-like growth factor 2 (IGF-II) (rather than by hypersecretion of insulin); the IGF-II is often secreted from the tumour tissue in a precursor form.

Hypermethylation

The addition of methyl groups to clustered cytosine residues in regulatory regions of DNA, which leads to the inhibition of gene transcription.

Endocytic receptor

A receptor that mediates the cellular uptake of proteins from the extracellular space.

Non-homologous end-joining

(NHEJ). A common mechanism of repairing double-strand DNA breaks that involves ligation of the broken DNA strands without the use of a DNA template to ensure faithful restoration of the original sequence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, R. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 14, 329–341 (2014). https://doi.org/10.1038/nrc3720

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3720

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer