Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

An intermittent approach for cancer chemoprevention

Abstract

Cancer chemoprevention approaches generally use long-term, continuous treatment, which can produce major preventive effects but which can also have unexpected serious adverse events. This raises the question of whether intermittent dosing schedules might reduce toxicity while retaining benefit, a concept that we call short-term intermittent therapy to eliminate premalignancy (SITEP). Recent preclinical studies support a novel SITEP approach whereby short-term, intermittent therapy eliminates premalignant cells via apoptosis that is induced by synthetic lethal interactions. Synthetic lethality allows personalized, selective elimination of premalignant clones without harming normal cells. This Opinion article provides a detailed discussion of the principle, method and future development of the SITEP approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of SITEP.
Figure 2: Cancer selectivity of TRAIL.
Figure 3: Synthetic lethal interactions suitable for SITEP.

Similar content being viewed by others

References

  1. Sporn, M. B., Dunlop, N. M., Newton, D. L. & Smith, J. M. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 35, 1332–1338 (1976).

    CAS  PubMed  Google Scholar 

  2. Goss, P. E. et al. Exemestane for breast-cancer prevention in postmenopausal women. N. Engl. J. Med. 364, 2381–2391 (2011).

    Article  CAS  Google Scholar 

  3. Cummings, S. R. et al. Lasofoxifene in postmenopausal women with osteoporosis. N. Engl. J. Med. 362, 686–696 (2010).

    Article  CAS  Google Scholar 

  4. Vogel, V. G. et al. Update of the national surgical adjuvant breast and bowel project study of tamoxifen and raloxifene (STAR) P-2 trial: preventing breast cancer. Cancer Prev. Res. (Phila) 3, 696–706 (2010).

    Article  CAS  Google Scholar 

  5. Lippman, S. M. & Hawk, E. T. Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Res. 69, 5269–5284 (2009).

    Article  CAS  Google Scholar 

  6. Andriole, G. L. et al. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med. 362, 1192–1202 (2010).

    Article  CAS  Google Scholar 

  7. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  Google Scholar 

  8. Bertagnolli, M. M. et al. Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med. 355, 873–884 (2006).

    Article  CAS  Google Scholar 

  9. Chan, A. T. et al. C-reactive protein and risk of colorectal adenoma according to celecoxib treatment. Cancer Prev. Res. (Phila) 4, 1172–1180 (2011).

    Article  CAS  Google Scholar 

  10. Waters, E. A., Cronin, K. A., Graubard, B. I., Han, P. K. & Freedman, A. N. Prevalence of tamoxifen use for breast cancer chemoprevention among, US women. Cancer Epidemiol. Biomarkers Prev. 19, 443–446 (2010).

    Article  CAS  Google Scholar 

  11. Freedman, A. N. et al. Benefit/Risk assessment for breast cancer chemoprevention with raloxifene or tamoxifen for women age 50 years or older. J. Clin. Oncol. 29, 2327–2333 (2011).

    Article  CAS  Google Scholar 

  12. Theoret, M. R. et al. The risks and benefits of 5a-reductase inhibitors for prostate-cancer prevention. N. Engl. J. Med. 365, 97–99 (2011).

    Article  CAS  Google Scholar 

  13. Meyskens, F. L. Jr et al. Regulatory approval of cancer risk-reducing (chemopreventive) drugs: moving what we have learned into the clinic. Cancer Prev. Res. (Phila) 4, 311–323 (2011).

    Article  Google Scholar 

  14. Buchan, N. C. & Goldenberg, S. L. Intermittent androgen suppression for prostate cancer. Nature Rev. Urol. 7, 552–560 (2010).

    Article  CAS  Google Scholar 

  15. Barnes, C. J. & Lee, M. Determination of an optimal dosing regimen for aspirin chemoprevention of 1, 2-dimethylhydrazine-induced colon tumours in rats. Br. J. Cancer 79, 1646–1650 (1999).

    Article  CAS  Google Scholar 

  16. Primiano, T. et al. Intermittent dosing with oltipraz: relationship between chemoprevention of aflatoxin-induced tumorigenesis and induction of glutathione S-transferases. Cancer Res. 55, 4319–4324 (1995).

    CAS  PubMed  Google Scholar 

  17. Rendi, M. H. et al. The selective estrogen receptor modulator arzoxifene and the rexinoid LG100268 cooperate to promote transforming growth factor beta-dependent apoptosis in breast cancer. Cancer Res. 64, 3566–3571 (2004).

    Article  CAS  Google Scholar 

  18. Tarle, M., Spajic, B., Kraljic, I. & Kusic, Z. Continuous finasteride therapy for benign prostate hypertrophy upgrades both neuroendorcine differentiation and aggressive prostate cancer. Anticancer Res. 29, 1797–1801 (2009).

    CAS  PubMed  Google Scholar 

  19. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  Google Scholar 

  20. Sun, S. Y., Hail, N. Jr & Lotan, R. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 96, 662–672 (2004).

    Article  CAS  Google Scholar 

  21. William, W. N. Jr et al. High-dose fenretinide in oral leukoplakia. Cancer Prev. Res. (Phila) 2, 22–26 (2009).

    Article  CAS  Google Scholar 

  22. Qiu, W. et al. Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc. Natl Acad. Sci. USA 107, 20027–20032 (2010).

    Article  CAS  Google Scholar 

  23. Meyskens, F. L. Jr. et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev. Res. (Phila) 1, 32–38 (2008).

    Article  CAS  Google Scholar 

  24. Keller, J. J., Offerhaus, G. J., Hylind, L. M. & Giardiello, F. M. Rectal epithelial apoptosis does not predict response to sulindac treatment or polyp development in presymptomatic familial adenomatous polyposis patients. Cancer Epidemiol. Biomarkers Prev. 11, 670–671 (2002).

    PubMed  Google Scholar 

  25. Meyskens, F. L. Jr & Gerner, E. W. Back to the future: mechanism-based, mutation-specific combination chemoprevention with a synthetic lethality approach. Cancer Prev. Res. (Phila) 4, 628–632 (2011).

    Article  Google Scholar 

  26. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  27. Deramaudt, T. & Rustgi, A. K. Mutant KRAS in the initiation of pancreatic cancer. Biochim. Biophys. Acta 1756, 97–101 (2005).

    CAS  PubMed  Google Scholar 

  28. Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    Article  CAS  Google Scholar 

  29. Taoudi Benchekroun, M. et al. Epidermal growth factor receptor expression and gene copy number in the risk of oral cancer. Cancer Prev. Res. (Phila) 3, 800–809 (2010).

    Article  Google Scholar 

  30. Tang, X. et al. Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas. Cancer Prev. Res. (Phila) 1, 192–200 (2008).

    Article  CAS  Google Scholar 

  31. Sakamoto, H. et al. Disproportionate representation of KRAS gene mutation in atypical adenomatous hyperplasia, but even distribution of EGFR gene mutation from preinvasive to invasive adenocarcinomas. J. Pathol. 212, 287–294 (2007).

    Article  CAS  Google Scholar 

  32. Howe, L. R. & Brown, P. H. Targeting the HER/EGFR/ErbB family to prevent breast cancer. Cancer Prev. Res. (Phila). 4, 1149–1157 (2011).

    Article  CAS  Google Scholar 

  33. Dobzhansky, T. Genetics of Natural Populations. Xiii. Recombination and variability in populations of Drosophila melanogaster. Genetics 31, 269–290 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lucchesi, J. C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogaster. Genetics 59, 37–44 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guarente, L. Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet. 9, 362–366 (1993).

    Article  CAS  Google Scholar 

  36. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).

    Article  CAS  Google Scholar 

  37. Reinhardt, H. C., Jiang, H., Hemann, M. T. & Yaffe, M. B. Exploiting synthetic lethal interactions for targeted cancer therapy. Cell Cycle 8, 3112–3119 (2009).

    Article  CAS  Google Scholar 

  38. Zhang, L. et al. Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464, 1058–1061 (2010).

    Article  CAS  Google Scholar 

  39. Pitti, R. M. et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687–12690 (1996).

    Article  CAS  Google Scholar 

  40. Wiley, S. R. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682 (1995).

    Article  CAS  Google Scholar 

  41. Kelley, S. K. & Ashkenazi, A. Targeting death receptors in cancer with Apo2L/TRAIL. Curr. Opin. Pharmacol. 4, 333–339 (2004).

    Article  CAS  Google Scholar 

  42. Sprick, M. R. et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599–609 (2000).

    Article  CAS  Google Scholar 

  43. Schneider, P. & Tschopp, J. Apoptosis induced by death receptors. Pharm. Acta. Helv. 74, 281–286 (2000).

    Article  CAS  Google Scholar 

  44. Falschlehner, C., Emmerich, C. H., Gerlach, B. & Walczak, H. TRAIL signalling: decisions between life and death. Int. J. Biochem. Cell Biol. 39, 1462–1475 (2007).

    Article  CAS  Google Scholar 

  45. Koschny, R., Walczak, H. & Ganten, T. M. The promise of TRAIL-potential and risks of a novel anticancer therapy. J. Mol. Med. 85, 923–935 (2007).

    Article  CAS  Google Scholar 

  46. Ashkenazi, A. et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999).

    Article  CAS  Google Scholar 

  47. Kelley, S. K. et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther. 299, 31–38 (2001).

    CAS  PubMed  Google Scholar 

  48. Lawrence, D. et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med. 7, 383–385 (2001).

    Article  CAS  Google Scholar 

  49. Herbst, R. S. et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J. Clin. Oncol. 28, 2839–2846 (2010).

    Article  CAS  Google Scholar 

  50. Camidge, D. R. et al. A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin. Cancer Res. 16, 1256–1263 (2010).

    Article  CAS  Google Scholar 

  51. Tolcher, A. W. et al. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J. Clin. Oncol. 25, 1390–1395 (2007).

    Article  CAS  Google Scholar 

  52. Gonzalvez, F. & Ashkenazi, A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29, 4752–4765 (2010).

    Article  CAS  Google Scholar 

  53. Shirley, S. & Micheau, O. Targeting c-FLIP in cancer. Cancer Lett. 9 Nov 2010 (doi:10.1016/j.canlet.2010.10.009).

  54. Wagner, K. W. et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nature Med. 13, 1070–1077 (2007).

    Article  CAS  Google Scholar 

  55. Bachireddy, P., Bendapudi, P. K. & Felsher, D. W. Getting at MYC through RAS. Clin. Cancer Res. 11, 4278–4281 (2005).

    Article  CAS  Google Scholar 

  56. Huang, S., Ren, X., Wang, L., Zhang, L. & Wu, X. Lung cancer chemoprevention by induction of synthetic lethality in mutant KRAS premalignant cells in vitro and in vivo. Cancer Prev. Res. (Phila) 4, 666–673 (2011).

    Article  CAS  Google Scholar 

  57. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    Article  CAS  Google Scholar 

  58. Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821–834 (2009).

    Article  CAS  Google Scholar 

  59. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  Google Scholar 

  60. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  Google Scholar 

  61. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  Google Scholar 

  62. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  Google Scholar 

  63. Gelmon, K. A. et al. Can we define tumours that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian cancer and triple-negative breast cancer. J. Clin. Oncol. Abstr. 28, 3002 (2010).

    Article  Google Scholar 

  64. Tryggvadottir, L. et al. Prostate cancer progression and survival in BRCA2 mutation carriers. J. Natl. Cancer Inst. 99, 929–935 (2007).

    Article  CAS  Google Scholar 

  65. Polyak, K. & Garber, J. Targeting the missing links for cancer therapy. Nature Med. 17, 283–284 (2011).

    Article  CAS  Google Scholar 

  66. Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA 105, 17079–17084 (2008).

    Article  CAS  Google Scholar 

  67. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Rev. Cancer 2, 420–430 (2002).

    Article  CAS  Google Scholar 

  68. Abdulghani, J. & El-Deiry, W. S. TRAIL receptor signaling and therapeutics. Expert Opin. Ther. Targets. 14, 1091–1108 (2010).

    Article  CAS  Google Scholar 

  69. Powles, T. J. Prevention of breast cancer using SERMs. Adv. Exp. Med. Biol. 630, 232–236 (2008).

    Article  CAS  Google Scholar 

  70. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    Article  CAS  Google Scholar 

  71. Bisgaard, M. L., Fenger, K., Bulow, S., Niebuhr, E. & Mohr, J. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum. Mutat. 3, 121–125 (1994).

    Article  CAS  Google Scholar 

  72. Lynch, P. M. Chemoprevention with special reference to inherited colorectal cancer. Fam. Cancer 7, 59–64 (2008).

    Article  CAS  Google Scholar 

  73. Wallace, M. H. & Lynch, P. M. The current status of chemoprevention in FAP. Fam. Cancer 5, 289–296 (2006).

    Article  CAS  Google Scholar 

  74. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  Google Scholar 

  75. Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  76. Yang, K. et al. A mouse model of human familial adenomatous polyposis. J. Exp. Zool. 277, 245–254 (1997).

    Article  CAS  Google Scholar 

  77. Fodde, R. et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl Acad. Sci. USA 91, 8969–8973 (1994).

    Article  CAS  Google Scholar 

  78. Rupnarain, C., Dlamini, Z., Naicker, S. & Bhoola, K. Colon cancer: genomics and apoptotic events. Biol. Chem. 385, 449–464 (2004).

    Article  CAS  Google Scholar 

  79. Chan, D. A. & Giaccia, A. J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nature Rev. Drug Discov. 10, 351–364 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by a CPRIT grant RP110107 to X.W. and the institutional core/CCSG grant 5P30 CA-16672-36 from US NIH/NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwei Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Lippman, S. An intermittent approach for cancer chemoprevention. Nat Rev Cancer 11, 879–885 (2011). https://doi.org/10.1038/nrc3167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3167

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer