Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional proteomics to dissect tyrosine kinase signalling pathways in cancer

Key Points

  • Signalling pathways are commonly deranged in cancer and quantitative proteomics offers powerful approaches to map these pathways and their aberrations in cancer.

  • Hubs in signalling pathways feature multiple protein interactions, which are involved in information processing and specification of the biological responses. These networks can be mapped by interaction proteomics to reveal molecular mechanisms of transformation and potential targets for therapeutic interventions.

  • The oncogenic actions of the epidermal growth factor receptor (EGFR) network and the breakpoint cluster region (BCR)–ABL1 oncogene rely on the dynamic assembly of multiprotein complexes, which activate multiple downstream pathways that cooperate in transformation. In EGFR networks, the oncogenic potential increases with the number of downstream pathways being activated.

  • The dynamic assembly of protein complexes is regulated by post-translational modifications (PTMs) such as phosphorylation. Advances in phosphoproteomics allow the targeted and global mapping of phosphorylation networks, confirming that kinase networks play major parts in cancer and offer numerous new targets for therapeutic intervention.

  • In addition to phosphorylation, a role for PTMs in the regulation of cancer cell biology is becoming increasingly recognized. For example, proteomic studies of ubiquitylation are beginning to unravel extensive alterations that contribute to cancer, such as growth factor receptor activation, transcription factor function, protein localization and degradation.

  • Dynamic changes in protein abundance and PTMs may also contribute to cancer cell heterogeneity, and new proteomics technologies based on optical, spectroscopic and microarray methods are being developed to analyse individual cells.

Abstract

Advances in the generation and interpretation of proteomics data have spurred a transition from focusing on protein identification to functional analysis. Here we review recent proteomics results that have elucidated new aspects of the roles and regulation of signal transduction pathways in cancer using the epidermal growth factor receptor (EGFR), ERK and breakpoint cluster region (BCR)–ABL1 networks as examples. The emerging theme is to understand cancer signalling as networks of multiprotein machines which process information in a highly dynamic environment that is shaped by changing protein interactions and post-translational modifications (PTMs). Cancerous genetic mutations derange these protein networks in complex ways that are tractable by proteomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The epidermal growth factor receptor signalling network.
Figure 2: The BCR–ABL1 signalling network.
Figure 3: The ubiquitin system.

Similar content being viewed by others

References

  1. Wolf-Yadlin, A., Sevecka, M. & MacBeath, G. Dissecting protein function and signaling using protein microarrays. Curr. Opin. Chem. Biol. 13, 398–405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schulz, K. R., Danna, E. A., Krutzik, P. O. & Nolan, G. P. Single-cell phospho-protein analysis by flow cytometry. Curr. Protoc. Immunol. 78, 8.17.1–8.17.20 (2007).

    Google Scholar 

  3. Fournier, F. et al. Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis. Acc. Chem. Res. 42, 1322–1231 (2009).

    CAS  PubMed  Google Scholar 

  4. Faley, S. L. et al. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9, 2659–2664 (2009).

    CAS  PubMed  Google Scholar 

  5. Melo, J. V. & Barnes, D. J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Rev. Cancer 7, 441–453 (2007).

    CAS  Google Scholar 

  6. Burckstummer, T. et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nature Methods 3, 1013–1019 (2006).

    PubMed  Google Scholar 

  7. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    CAS  PubMed  Google Scholar 

  8. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006). References 7 and 8 are landmark papers showing the mapping of the yeast interactome by MS-based proteomics.

    CAS  PubMed  Google Scholar 

  9. Bublil, E. M. & Yarden, Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 19, 124–134 (2007).

    CAS  PubMed  Google Scholar 

  10. Hammond, D. E. et al. Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks. J. Proteome Res. 9, 2734–2742 (2010).

    CAS  PubMed  Google Scholar 

  11. Gordus, A. et al. Linear combinations of docking affinities explain quantitative differences in RTK signaling. Mol. Syst. Biol. 5, 235 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Mitsudomi, T. & Yatabe, Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 277, 301–308 (2010).

    CAS  PubMed  Google Scholar 

  13. Dengjel, J., Kratchmarova, I. & Blagoev, B. Receptor tyrosine kinase signaling: a view from quantitative proteomics. Mol. Biosyst. 5, 1112–1121 (2009).

    CAS  PubMed  Google Scholar 

  14. von Kriegsheim, A., Preisinger, C. & Kolch, W. Mapping of signaling pathways by functional interaction proteomics. Methods Mol. Biol. 484, 177–192 (2008).

    CAS  PubMed  Google Scholar 

  15. Preisinger, C., von Kriegsheim, A., Matallanas, D. & Kolch, W. Proteomics and phosphoproteomics for the mapping of cellular signalling networks. Proteomics 8, 4402–4415 (2008).

    CAS  PubMed  Google Scholar 

  16. Ong, S.-E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nature Chem. Biol. 1, 252–262 (2005).

    CAS  Google Scholar 

  17. Blagoev, B. & Mann, M. Quantitative proteomics to study mitogen-activated protein kinases. Methods 40, 243–250 (2006).

    CAS  PubMed  Google Scholar 

  18. Cheng, X. Understanding signal transduction through functional proteomics. Expert Rev. Proteomics 2, 103–116 (2005).

    CAS  PubMed  Google Scholar 

  19. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    CAS  PubMed  Google Scholar 

  20. Amit, I., Wides, R. & Yarden, Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol. Syst. Biol. 3, 151 (2007).

    PubMed  PubMed Central  Google Scholar 

  21. Papanikolaou, N. A. & Papavassiliou, A. G. Protein complex, gene, and regulatory modules in cancer heterogeneity. Mol. Med. 14, 543–545 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Henson, E. S. & Gibson, S. B. in Signal Transduction: Pathways, Mechanisms and Diseases (ed. http://search.barnesandnoble.com/booksearch/results.asp?ATH=Ari+Sitaramayya Sitaramayya, A.) 119–141 (Springer-Verlag, New York, 2010).

    Google Scholar 

  24. Blagoev, B., Kratchmarova, I., Olsen, J. V. & Mann, M. in EGFR Signaling Networks in Cancer Therapy (eds Haley, J. D. & Gullick, W. J.) 190–198 (Springer-Verlag, New York, 2008).

    Google Scholar 

  25. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol. 7, 165–176 (2006).

    CAS  Google Scholar 

  26. Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13, 43–50 (2003).

    CAS  PubMed  Google Scholar 

  27. Schulze, W. X., Deng, L. & Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, 2005.0008 (2005). This paper describes an exhaustive, quantitative MS-based proteomics strategy to functionally map the protein interactions that mediate ErbB family signalling.

    PubMed  PubMed Central  Google Scholar 

  28. Jones, R. B., Gordus, A., Krall, J. A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006). Similar to Reference 27, this paper describes the use of protein microarrays for the functional mapping of protein interactions in the ErbB family.

    CAS  PubMed  Google Scholar 

  29. Alroy, I. & Yarden, Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand–receptor interactions. FEBS Lett. 410, 83–86 (1997).

    CAS  PubMed  Google Scholar 

  30. Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).

    CAS  PubMed  Google Scholar 

  31. von Kriegsheim, A. et al. Cell fate decisions are specified by the dynamic ERK interactome. Nature Cell Biol. 11, 1458–U172 (2009). This paper shows how dynamic changes in ERK interactions with other proteins can specify cell fate decisions in response to different growth factors. An important conclusion is that differentiation is not controlled by a master regulator but that control is functionally distributed over an entire protein network.

    CAS  PubMed  Google Scholar 

  32. Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44 (2006).

    CAS  PubMed  Google Scholar 

  33. Irvine, D. A., Heaney, N. B. & Holyoake, T. L. Optimising chronic myeloid leukaemia therapy in the face of resistance to tyrosine kinase inhibitors — a synthesis of clinical and laboratory data. Blood Rev. 24, 1–9 (2010).

    CAS  PubMed  Google Scholar 

  34. Nicholson, E. & Holyoake, T. The chronic myeloid leukemia stem cell. Clin. Lymphoma Myeloma 9 (Suppl. 4), 376–381 (2009).

    Google Scholar 

  35. Sawyers, C. L. Signal transduction pathways involved in BCR–ABL transformation. Baillieres Clin. Haematol. 10, 223–231 (1997).

    CAS  PubMed  Google Scholar 

  36. Brehme, M. et al. Charting the molecular network of the drug target Bcr—Abl. Proc. Natl Acad. Sci. USA 106, 7414–7419 (2009). This paper uses interaction proteomics to map the core protein network involved in signalling by the BCR–ABL1 oncogene and also examines the effects of the BCR–ABL1 kinase inhibitor imatinib on the network.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brennan, D. J., O'Connor, D. P., Rexhepaj, E., Ponten, F. & Gallagher, W. M. Antibody-based proteomics: towards the implementation of personalised diagnostic and predictive protocols for cancer patients. Nature Rev. Cancer 10, 605–617 (2010).

    CAS  Google Scholar 

  38. Dhillon, A. S., von Kriegsheim, A., Grindlay, J. & Kolch, W. Phosphatase and feedback regulation of Raf-1 signaling. Cell Cycle 6, 3–7 (2007).

    CAS  PubMed  Google Scholar 

  39. Nguyen, A. et al. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol. Cell Biol. 22, 3035–3045 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kortum, R. L. & Lewis, R. E. The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol. Cell Biol. 24, 4407–4416 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lozano, J. et al. Deficiency of kinase suppressor of Ras1 prevents oncogenic Ras signaling in mice. Cancer Res. 63, 4232–4238 (2003).

    CAS  PubMed  Google Scholar 

  42. McKay, M. M., Ritt, D. A. & Morrison, D. K. Signaling dynamics of the KSR1 scaffold complex. Proc. Natl Acad. Sci. USA 106, 11022–11027 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    CAS  PubMed  Google Scholar 

  44. Casar, B., Pinto, A. & Crespo, P. Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK–scaffold complexes. Mol. Cell 31, 708–721 (2008).

    CAS  PubMed  Google Scholar 

  45. Liu, L. et al. Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway. Biochim.Biophys. Acta 1794, 1485–1495 (2009).

    CAS  PubMed  Google Scholar 

  46. Rauch, J. et al. Heterogeneous nuclear ribonucleoprotein H blocks MST2-mediated apoptosis in cancer cells by regulating A-Raf transcription. Cancer Res. 70, 1679–1688 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Levchenko, A., Bruck, J. & Sternberg, P. W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl Acad. Sci. USA 97, 5818–5823 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dougherty, M. K. et al. KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Mol. Cell 34, 652–662 (2009). A proteomic comparison of binding partners of KSR1 and KSR2 revealed the selective regulation of KSR2 by the associated calcium-regulated phosphatase calcineurin, thus demonstrating the regulation of the function of a scaffold protein by a second messenger pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Costanzo-Garvey, D. L. et al. KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab. 10, 366–378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mazurek, S., Drexler, H. C., Troppmair, J., Eigenbrodt, E. & Rapp, U. R. Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go mechanism. Anticancer Res. 27, 3963–3971 (2007).

    CAS  PubMed  Google Scholar 

  51. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    CAS  PubMed  Google Scholar 

  52. Macek, B., Mann, M. & Olsen, J. V. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu. Rev. Pharmacol. Toxicol. 49, 199–221 (2009).

    CAS  PubMed  Google Scholar 

  53. Oppermann, F. S. et al. Large-scale proteomics analysis of the human kinome. Mol. Cell Proteomics 8, 1751–1764 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mayya, V. & Han, D. K. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev. Proteomics 6, 605–618 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006). This paper reports the large-scale quantitative mapping of phosphorylation events triggered by EGF, revealing new insights into the role of phosphorylation in signalling.

    CAS  PubMed  Google Scholar 

  56. Schmezle, K. & White, F. M. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr. Opin. Biotechnol. 17, 406–414 (2006).

    Google Scholar 

  57. Blagoev, B., Ong, S. E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnol. 22, 1139–1145 (2004).

    CAS  Google Scholar 

  58. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M. & Mann, M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477 (2005).

    CAS  PubMed  Google Scholar 

  59. Ball, S. G., Shuttleworth, C. A. & Kielty, C. M. Platelet-derived growth factor receptors regulate mesenchymal stem cell fate: implications for neovascularization. Expert Opin. Biol. Ther. 10, 57–71 (2010).

    CAS  PubMed  Google Scholar 

  60. Heibeck, T. H. et al. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J. Proteome Res. 8, 3852–3861 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gan, H. K., Kaye, A. H. & Luwor, R. B. The EGFRvIII variant in glioblastoma multiforme. J. Clin. Neurosci. 16, 748–754 (2009).

    CAS  PubMed  Google Scholar 

  62. Huang, P. H. et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc. Natl Acad. Sci. USA 104, 12867–12872 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Guo, A. et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl Acad. Sci. USA 105, 692–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet. 39, 503–512 (2007).

    CAS  PubMed  Google Scholar 

  65. Govindan, R. A review of epidermal growth factor receptor/HER2 inhibitors in the treatment of patients with non-small-cell lung cancer. Clin. Lung Cancer 11, 8–12 (2010).

    CAS  PubMed  Google Scholar 

  66. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–203 (2007). Proteomic profiling of tyrosine phosphorylation in a set of approximately 200 lung cancers identified characteristic phosphorylation signatures, as well as known and new tyrosine kinases that are involved in lung cancer.

    CAS  PubMed  Google Scholar 

  67. Wolf-Yadlin, A. et al. Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol. Syst. Biol. 2, 54 (2006).

    PubMed  PubMed Central  Google Scholar 

  68. Kumar, N., Wolf-Yadlin, A., White, F. M. & Lauffenburger, D. A. Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data. PLoS Comput. Biol. 3, e4 (2007).

    PubMed  PubMed Central  Google Scholar 

  69. Villen, J. & Gygi, S. P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protoc. 3, 1630–1638 (2008).

    Google Scholar 

  70. Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B. & Aebersold, R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nature Methods 4, 231–237 (2007).

    CAS  PubMed  Google Scholar 

  71. Choudhary, C. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol. Cell 36, 326–339 (2009).

    CAS  PubMed  Google Scholar 

  72. Chen, Y. et al. Combined integrin phosphoproteomic analyses and small interfering RNA-based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res. 69, 3713–3720 (2009). This study uses a combination of quantitative proteomics and functional siRNA experiments to identify proteins that mediate integrin-regulated cell adhesion and migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Siu, M. K. et al. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int. J. Cancer 127, 21–31 (2010).

    CAS  PubMed  Google Scholar 

  74. Tiedemann, R. E. et al. Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115, 1594–1604 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bonte, D. et al. Cdc7–Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation. Neoplasia 10, 920–931 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hall, M. C. Proteomics modifies our understanding of cell cycle complexity. Sci. Signal. 3, pe4 (2010).

    PubMed  Google Scholar 

  77. Shimoji, S., Park, K. & Hart, G. W. Dynamic crosstalk between GlcNacylation and phosphorylation: roles in signaling, transcription and human disease. Curr. Signal Transduction Therapy 5 (Supp.), 25–40 (2010).

    CAS  Google Scholar 

  78. Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    CAS  PubMed  Google Scholar 

  79. Wang, Z. et al. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci. Signal. 3, ra2 (2010). This paper shows that O-GlcNAcylation competes with phosphorylation and plays a major part in the regulation of mitotic spindle assembly and cytokinesis.

    PubMed  PubMed Central  Google Scholar 

  80. Chalkley, R. J., Thalhammer, A., Schoepfer, R. & Burlingame, A. L. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc. Natl Acad. Sci. USA 106, 8894–8899 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, S. L. et al. Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Mol. Cell Proteomics 5, 1610–1627 (2006).

    CAS  PubMed  Google Scholar 

  82. Yang, W. L., Wu, C. Y., Wu, J. & Lin, H. K. Regulation of Akt signaling activation by ubiquitination. Cell Cycle 9, 486–497 (2010).

    CAS  Google Scholar 

  83. Kitagawa, K., Kotake, Y. & Kitagawa, M. Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci. 100, 1374–1381 (2009).

    CAS  PubMed  Google Scholar 

  84. Ardley, H. C. Ring finger ubiquitin protein ligases and their implication to the pathogenesis of human diseases. Curr. Pharm. Des. 15, 3697–3715 (2009).

    CAS  PubMed  Google Scholar 

  85. Vlachostergios, P. J., Patrikidou, A., Daliani, D. D. & Papandreou, C. N. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J. Cell. Mol. Med. 13, 3006–3018 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Vlachostergios, P. J., Patrikidou, A., Daliani, D. D. & Papandreou, C. N. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J. Cell. Mol. Med. 13, 3019–3031 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer 6, 369–381 (2006).

    CAS  Google Scholar 

  88. Mani, A. & Gelmann, E. P. The ubiquitin-proteasome pathway and its role in cancer. J. Clin. Oncol. 23, 4776–4789 (2005).

    CAS  PubMed  Google Scholar 

  89. Coutts, A. S., Adams, C. J. & La Thangue, N. B. p53 ubiquitination by Mdm2: a never ending tail? DNA Repair 8, 483–490 (2009).

    CAS  PubMed  Google Scholar 

  90. Marine, J. C. & Lozano, G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Diff. 17, 93–102 (2010).

    CAS  Google Scholar 

  91. Yang, Y. L., Kitagaki, J., Wang, H., Hou, D. X. & Perantoni, A. O. Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci. 100, 24–28 (2009).

    CAS  PubMed  Google Scholar 

  92. Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009).

    CAS  PubMed  Google Scholar 

  93. Ande, S. R., Chen, J. J. & Maddika, S. The ubiquitin pathway: an emerging drug target in cancer therapy. Eur. J. Pharm. 625, 199–205 (2009).

    CAS  Google Scholar 

  94. Nalepa, G., Rolfe, M. & Harper, J. W. Drug discovery in the ubiquitin-proteasome system. Nature Rev. Drug Discov. 5, 596–613 (2006).

    CAS  Google Scholar 

  95. Tang, X. et al. Genome-wide surveys for phosphorylation-dependent substrates of SCF ubiquitin ligases. Methods Enzymol. 399, 433–458 (2005).

    CAS  PubMed  Google Scholar 

  96. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-Box. Cell 86, 263–274 (1996).

    CAS  PubMed  Google Scholar 

  97. Radivojac, P. et al. Identification, analysis, and prediction of protein ubiquitination sites. Proteins 78, 365–380 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    CAS  PubMed  Google Scholar 

  99. Angers, S. et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    CAS  PubMed  Google Scholar 

  100. Jeram, S. M. et al. An improved SUMmOn-based methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages. Proteomics 10, 254–265 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Burande, C. F. et al. A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol. Cell. Proteomics 8, 1719–1727 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Merbl, Y. & Kirschner, M. W. Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proc. Natl Acad. Sci. USA 106, 2543–2548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Persaud, A. et al. Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol. Syst. Biol. 5, 333 (2009). References 102 and 103 demonstrate the use of protein microarrays to systematically identify substrates for ubiquitin ligases on a large scale.

    PubMed  PubMed Central  Google Scholar 

  104. Chen, C. & Matesic, L. E. The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer Metastasis Rev. 26, 587–604 (2007).

    CAS  PubMed  Google Scholar 

  105. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    CAS  PubMed  Google Scholar 

  106. Irish, J. M., Kotecha, N. & Nolan, G. P. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nature Rev. Cancer 6, 146–155 (2006).

    CAS  Google Scholar 

  107. Kreeger, P. K. & Lauffenburger, D. A. Cancer systems biology: a network modeling perspective. Carcinogenesis 31, 2–8 (2010).

    CAS  PubMed  Google Scholar 

  108. Taylor, I. W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnol. 27, 199–204 (2009). This paper shows that dynamic changes in the organization of cellular protein–protein interactions differ between patients with breast cancer and can be used to predict prognosis.

    CAS  Google Scholar 

  109. Tan, C. S. et al. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci. Signal. 2, ra39 (2009). Here, the reconstruction of kinase–substrate networks based on phosphoproteomics data and evolutionary conservation of the phoshorylation sites revealed that several diseases, including cancer, affect conserved parts of the phosphorylation networks.

    PubMed  Google Scholar 

  110. Fenselau, C. A review of quantitative methods for proteomic studies. J. Chromatogr. B 855, 14–20 (2007).

    CAS  Google Scholar 

  111. Van den Bergh, G. & Arckens, L. Recent advances in 2D electrophoresis: an array of possibilities. Expert Rev. Proteomics 2, 243–252 (2005).

    CAS  PubMed  Google Scholar 

  112. Pan, S. & Aebersold, R. Quantitative proteomics by stable isotope labeling and mass spectrometry. Methods Mol. Biol. 367, 209–218 (2007).

    CAS  PubMed  Google Scholar 

  113. Wepf, A., Glatter, T., Schmidt, A., Aebersold, R. & Gstaiger, M. Quantitative interaction proteomics using mass spectrometry. Nature Methods 6, 203–205 (2009).

    CAS  PubMed  Google Scholar 

  114. Linscheid, M. W., Ahrends, R., Pieper, S. & Kuhn, A. Liquid chromatography-mass spectrometry-based quantitative proteomics. Methods Mol. Biol. 564, 189–205 (2009).

    CAS  PubMed  Google Scholar 

  115. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

    CAS  PubMed  Google Scholar 

  116. Everley, P. A., Krijgsveld, J., Zetter, B. R. & Gygi, S. P. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteomics 3, 729–735 (2004).

    CAS  PubMed  Google Scholar 

  117. Mann, M. Functional and quantitative proteomics using SILAC. Nature Rev. Mol. Cell Biol. 7, 952–958 (2006).

    CAS  Google Scholar 

  118. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    CAS  PubMed  Google Scholar 

  119. Beynon, R. J. & Pratt, J. M. Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics 4, 857–872 (2005).

    CAS  PubMed  Google Scholar 

  120. Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364 (2008).

    PubMed  Google Scholar 

  121. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotech. 17, 994–999 (1999).

    CAS  Google Scholar 

  122. Ross, P. L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    CAS  PubMed  Google Scholar 

  123. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Haqqani, A. S., Kelly, J. F. & Stanimirovic, D. B. Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods Mol. Biol. 439, 241–256 (2008).

    CAS  PubMed  Google Scholar 

  125. Negishi, A. et al. Large-scale quantitative clinical proteomics by label-free liquid chromatography and mass spectrometry. Cancer Sci. 100, 514–519 (2009).

    CAS  PubMed  Google Scholar 

  126. Kopf, E. & Zharhary, D. Antibody arrays — an emerging tool in cancer proteomics. Int. J. Biochem. Cell Biol. 39, 1305–1317 (2010).

    Google Scholar 

  127. Haab, B., Dunham, M. & Brown, P. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, research0004 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rino, J., Braga, J., Henriques, R. & Carmo-Fonseca, M. Frontiers in fluorescence microscopy. Int. J. Dev. Biol. 53, 1569–1579 (2009).

    CAS  PubMed  Google Scholar 

  129. Goldstein, D. M., Gray, N. S. & Zarrinkar, P. P. High-throughput kinase profiling as a platform for drug discovery. Nature Rev. Drug Discov. 7, 391–397 (2008).

    CAS  Google Scholar 

  130. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  131. Fedorov, O., Muller, S. & Knapp, S. The (un)targeted cancer kinome. Nature Chem. Biol. 6, 166–169 (2010).

    CAS  Google Scholar 

  132. Kubota, K. et al. Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nature Biotechnol. 27, 933–940 (2009).

    CAS  Google Scholar 

  133. Khan, I. H. et al. Microbead arrays for the analysis of ErbB receptor tyrosine kinase activation and dimerization in breast cancer cells. Assay Drug Dev. Technol. 8, 27–36 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wu, D., Sylvester, J. E., Parker, L. L., Zhou, G. & Kron, S. J. Peptide reporters of kinase activity in whole cell lysates. Biopolymers 94, 475–486 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Parikh, K., Peppelenbosch, M. P. & Ritsema, T. Kinome profiling using peptide arrays in eukaryotic cells. Methods Mol. Biol. 527, 269–280 (2009).

    CAS  PubMed  Google Scholar 

  136. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nature Chem. Biol. 5, 616–624 (2009).

    CAS  Google Scholar 

  137. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers. Nature Rev. Cancer 10, 457–469 (2010).

    CAS  Google Scholar 

  138. Young, N. L. et al. High throughput characterization of combinatorial histone codes. Mol. Cell. Proteomics 8, 2266–2284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou, Q. et al. Screening for therapeutic targets of vorinostat by SILAC-based proteomic analysis in human breast cancer cells. Proteomics 10, 1029–1039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Deribe, Y. L. et al. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal. 2, ra84 (2009).

    PubMed  Google Scholar 

  141. Rocks, O., Peyker, A. & Bastiaens, P. I. Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr. Opin. Cell Biol. 18, 351–357 (2006).

    CAS  PubMed  Google Scholar 

  142. Hao, D. & Rowinsky, E. K. Inhibiting signal transduction: recent advances in the development of receptor tyrosine kinase and Ras inhibitors. Cancer Invest. 20, 387–404 (2002).

    CAS  PubMed  Google Scholar 

  143. Yang, W., Di Vizio, D., Kirchner, M., Steen, H. & Freeman, M. R. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol. Cell. Proteomics 9, 54–70 (2010).

    CAS  PubMed  Google Scholar 

  144. Spickett, C. M., Pitt, A. R., Morrice, N. & Kolch, W. Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim. Biophys. Acta 1764, 1823–1841 (2006).

    CAS  PubMed  Google Scholar 

  145. Wilson, K. J., Gilmore, J. L., Foley, J., Lemmon, M. A. & Riese, D. J. 2nd. Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol. Ther. 122, 1–8 (2009).

    CAS  PubMed  Google Scholar 

  146. Citri, A. & Yarden, Y. EGF–ERBB signalling: towards the systems level. Nature Rev. Mol. Cell Biol. 7, 505–516 (2006).

    CAS  Google Scholar 

  147. Yao, Z. & Seger, R. The ERK signaling cascade — views from different subcellular compartments. Biofactors 35, 407–416 (2009).

    CAS  PubMed  Google Scholar 

  148. McKay, M. M. & Morrison, D. K. Integrating signals from RTKs to ERK/MAPK. Oncogene 26, 3113–3121 (2007).

    CAS  PubMed  Google Scholar 

  149. Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).

    CAS  PubMed  Google Scholar 

  150. Preisinger, C. & Kolch, W. The Bcr–Abl kinase regulates the actin cytoskeleton via a GADS/Slp-76/Nck1 adaptor protein pathway. Cell Signal. 22, 848–856 (2010).

    CAS  PubMed  Google Scholar 

  151. Dyson, J. M. et al. The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J. Cell Biol. 155, 1065–1079 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. EMBO Rep. 9, 536–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Schwartz, A. L. & Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol. 49, 73–96 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologise for omitting many important contributions due to space constraints. We are grateful for funding from Science Foundation Ireland grant 06/CE/B1129 (W.K.) and the Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council through the Radical Solutions for Researching the Proteome (RASOR) project BB/C511572/1 (A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Kolch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

dasatinib

imatinib

Pathway Interaction Database 

AKT

EGFR

EGFR network

ERK

MET

mTOR

p53

PDGF

Glossary

Chemical biology

Use of chemicals, usually drugs or drug-like compounds, to probe biological systems to measure the response of biological systems to perturbations. In proteomics, this term also increasingly refers to the use of affinity reagents to enrich classes of proteins for further analysis.

Chemical genetics

A part of chemical biology that focuses on the use of chemicals to explore genetic systems and genetic factors that determine drug sensitivity.

Scaffold protein

A protein that can simultaneously bind two or more other proteins, and thereby facilitate physical and functional interactions between the client proteins that bind to it.

Matrix management

A flexible management approach that assigns people with the required skill sets to projects, typically drawing expertise from different departments. This comparison is used to illustrate that a protein with a defined molecular function, such as a kinase, can be used by several different pathways.

Modularization

The grouping of different functions into a single unit (module) so that the output of the module can be treated as a single functional entity, such as the ability of different combinations of components of protein complexes to achieve the same output.

Non-oncogene addiction

This occurs when the action of oncogenes needs to be supported by apparently normally functioning signalling pathways that allow the mutated oncogene to develop its transforming activity.

SH2 domain

This domain was first discovered as a conserved domain in the Src kinase family. It recognizes short peptide motifs that contain a phosphorylated tyrosine residue and thus function as phosphotyrosine-dependent protein interaction sites.

Stable isotope labelling with amino acids in cell culture (SILAC)

This method involves the in vivo metabolic labelling of samples with amino acids that carry stable (non-radioactive) heavy isotope substitutions of atoms which, when analysed by MS, produce 'conjugated' peptide peaks. These peaks originate from the same protein but show a characteristic mass shift which corresponds to the mass difference between the light and heavy label. The relative intensity of conjugated peak pairs provides the relative abundance of a protein in the two samples.

Node

This describes an object in graph form, and the connections between objects are termed edges. In signalling networks, nodes represent proteins (or genes, if they are based on genetic information) and edges represent the relationship between the nodes, such as binding, regulation or modification.

Warburg effect

This was named after a discovery made by the German biochemist Otto Warburg in the 1920s that cancer cells predominantly use anaerobic glycolysis rather than oxidative phosphorylation, even when oxygen is abundant. As a result, pyruvate is converted to lactate instead of being oxidized by the mitochondria of cancer cells.

O-linked N-acetylglucosamine acylation (O-GlcNAcylation)

A form of glycosylation found in nuclear and cytosolic proteins in which O-GlcNAc is added to the hydroxyl groups of serine and threonine residues that can also serve as phosphorylation sites.

Isobaric tag for relative and absolute quantitation (iTRAQ)

A stable isotope labelling method for the quantitation of peptides by MS, in which a molecule containing normal or heavy isotopes is used to chemically modify the proteins or peptides from each individual sample. The fragmentation of the labelled molecules then gives rise to specific reporter ions that can be used to measure the relative amounts of each protein present in each sample.

Immobilized metal ion affinity chromatography (IMAC)

A method for the enrichment of phosphopeptides that exploits the propensity of metal ions such as iron and gallium to bind phosphate groups.

Electron transfer dissociation (ETD)

A recently introduced MS method for the fragmentation of molecules by transferring electrons from anion radicals to positively charged ions. It is a non-ergodic (rapid, kinetically controlled) process, so energy is not redistributed and many bonds are broken in the molecule, not just the weakest ones as seen in collision-induced dissociation.

WD40 domain

A protein domain consisting of 4–16 repeats of an approximately 40 amino acid-long motif that ends with a W–D (tryptophan–aspartic acid) dipeptide. The WD40 domains form a circular β-sheet propeller structure that serves as a structural platform for protein interactions and the specificity of the interactions is determined by sequences outside the WD repeats.

Cyclin

A regulatory subunit that is essential for the activity of cell cycle-dependent kinases (CDKs). Its name derives from the periodic expression of cyclins during the cell cycle, which is due to the regulated degradation by the ubiquitin–proteasome system that is thought to drive the cell cycle.

Micro-engineering

The use of micro-fabricated devices that have small (micron)-scale features (such as channels, wells and vessels) to allow the processing of small volumes of fluid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolch, W., Pitt, A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10, 618–629 (2010). https://doi.org/10.1038/nrc2900

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2900

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer