Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Crosstalk of Notch with p53 and p63 in cancer growth control

Abstract

Understanding the complexity of cancer depends on an elucidation of the underlying regulatory networks, at the cellular and intercellular levels and in their temporal dimension. This Opinion article focuses on the multilevel crosstalk between the Notch pathway and the p53 and p63 pathways. These two coordinated signalling modules are at the interface of external damaging signals and control of stem cell potential and differentiation. Positive or negative reciprocal regulation of the two pathways can vary with cell type and cancer stage. Therefore, selective or combined targeting of the two pathways could improve the efficacy and reduce the toxicity of cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Notch signalling module.
Figure 2: The p53 signalling module.
Figure 3: Notch and p53 control.
Figure 4: Crosstalk between p63 and Notch.
Figure 5: EGFR–p53–Notch: an integrated switch between tumour cell differentiation and apoptosis.

Similar content being viewed by others

References

  1. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J. & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).

    CAS  PubMed  Google Scholar 

  2. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007).

    CAS  PubMed  Google Scholar 

  3. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  4. Hurlbut, G. D., Kankel, M. W., Lake, R. J. & Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 19, 166–175 (2007).

    CAS  PubMed  Google Scholar 

  5. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Olivier, M. et al. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther. 16, 1–12 (2009).

    CAS  PubMed  Google Scholar 

  7. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol. 9, 402–412 (2008).

    CAS  Google Scholar 

  8. Stiewe, T. The p53 family in differentiation and tumorigenesis. Nature Rev. Cancer 7, 165–168 (2007).

    CAS  Google Scholar 

  9. Barolo, S. & Posakony, J. W. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev. 16, 1167–1181 (2002).

    CAS  PubMed  Google Scholar 

  10. Demarest, R. M., Ratti, F. & Capobianco, A. J. It's T-ALL about Notch. Oncogene 27, 5082–5091 (2008).

    CAS  PubMed  Google Scholar 

  11. Roy, M., Pear, W. S. & Aster, J. C. The multifaceted role of Notch in cancer. Curr. Opin. Genet. Dev. 17, 52–59 (2007).

    CAS  PubMed  Google Scholar 

  12. Dotto, G. P. Notch tumor suppressor function. Oncogene 27, 5115–5123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    CAS  PubMed  Google Scholar 

  14. Armstrong, J. F., Kaufman, M. H., Harrison, D. J. & Clarke, A. R. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol. 5, 931–936 (1995).

    CAS  PubMed  Google Scholar 

  15. Sah, V. P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    CAS  PubMed  Google Scholar 

  16. Saifudeen, Z., Dipp, S. & El-Dahr, S. S. A role for p53 in terminal epithelial cell differentiation. J. Clin. Invest. 109, 1021–1030 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jerry, D. J., Tao, L. & Yan, H. Regulation of cancer stem cells by p53. Breast Cancer Res. 10, 304 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Zhang, M. et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res. 68, 4674–4682 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    CAS  PubMed  Google Scholar 

  21. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    CAS  PubMed  Google Scholar 

  22. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).

    CAS  PubMed  Google Scholar 

  23. Hooper, C. et al. TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. J. Neurochem. 99, 989–999 (2006).

    CAS  PubMed  Google Scholar 

  24. Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20, 1028–1042 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Osada, M. et al. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol. Cell. Biol. 25, 6077–6089 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rocco, J. W., Leong, C. O., Kuperwasser, N., DeYoung, M. P. & Ellisen, L. W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9, 45–56 (2006).

    CAS  PubMed  Google Scholar 

  27. Westfall, M. D., Mays, D. J., Sniezek, J. C. & Pietenpol, J. A. The ΔNp63 α phosphoprotein binds the p21 and 14-3-3σ promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol. Cell. Biol. 23, 2264–2276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, G. et al. ΔNp63α and TAp63α regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 63, 2351–2357 (2003).

    CAS  PubMed  Google Scholar 

  29. Yang, A. et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305–316 (1998).

    CAS  PubMed  Google Scholar 

  30. Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nature Rev. Cancer 6, 909–923 (2006).

    CAS  Google Scholar 

  32. Boggs, K. & Reisman, D. C/EBPβ participates in regulating transcription of the p53 gene in response to mitogen stimulation. J. Biol. Chem. 282, 7982–7990 (2007).

    CAS  PubMed  Google Scholar 

  33. Bruno, T. et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell 10, 473–486 (2006).

    CAS  PubMed  Google Scholar 

  34. Kolev, V. et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nature Cell Biol. 10, 902–911 (2008).

    CAS  PubMed  Google Scholar 

  35. Phan, R. T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    CAS  PubMed  Google Scholar 

  36. Reisman, D. & Loging, W. T. Transcriptional regulation of the p53 tumor suppressor gene. Semin. Cancer Biol. 8, 317–324 (1998).

    CAS  PubMed  Google Scholar 

  37. Rowland, B. D., Bernards, R. & Peeper, D. S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biol. 7, 1074–1082 (2005).

    CAS  PubMed  Google Scholar 

  38. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    CAS  PubMed  Google Scholar 

  39. Beverly, L. J., Felsher, D. W. & Capobianco, A. J. Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res. 65, 7159–7168 (2005).

    CAS  PubMed  Google Scholar 

  40. Sulong, S. et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 113, 100–107 (2009).

    CAS  PubMed  Google Scholar 

  41. Mungamuri, S. K., Yang, X., Thor, A. D. & Somasundaram, K. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 66, 4715–4724 (2006).

    CAS  PubMed  Google Scholar 

  42. Nair, P., Somasundaram, K. & Krishna, S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J. Virol. 77, 7106–7112 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Palomero, T., Dominguez, M. & Ferrando, A. A. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle 7, 965–970 (2008).

    CAS  PubMed  Google Scholar 

  44. Guo, W. et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453, 529–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Uren, A. G. et al. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med. 13, 1203–1210 (2007).

    CAS  PubMed  Google Scholar 

  47. Kim, S. B. et al. Activated Notch1 interacts with p53 to inhibit its phosphorylation and transactivation. Cell Death Differ. 14, 982–991 (2007).

    PubMed  Google Scholar 

  48. Balint, K. et al. Activation of Notch1 signaling is required for β-catenin-mediated human primary melanoma progression. J. Clin. Invest. 115, 3166–3176 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Politi, K., Feirt, N. & Kitajewski, J. Notch in mammary gland development and breast cancer. Semin. Cancer Biol. 14, 341–347 (2004).

    CAS  PubMed  Google Scholar 

  50. Purow, B. W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 65, 2353–2363 (2005).

    CAS  PubMed  Google Scholar 

  51. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ronchini, C. & Capobianco, A. J. Induction of cyclin D1 transcription and CDK2 activity by Notchic: implication for cell cycle disruption in transformation by Notchic. Mol. Cell. Biol. 21, 5925–5934 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by δ-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    CAS  PubMed  Google Scholar 

  54. Nickoloff, B. J. et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-κB and PPARγ. Cell Death Differ. 9, 842–855 (2002).

    CAS  PubMed  Google Scholar 

  55. Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20, 3427–3436 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Estrach, S., Cordes, R., Hozumi, K., Gossler, A. & Watt, F. M. Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis. J. Invest. Dermatol. 128, 825–832 (2008).

    CAS  PubMed  Google Scholar 

  57. Lefort, K. et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev. 21, 562–577 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003).

    CAS  PubMed  Google Scholar 

  59. Proweller, A. et al. Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res. 66, 7438–7444 (2006).

    CAS  PubMed  Google Scholar 

  60. zur Hausen, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl Cancer Inst. 92, 690–698 (2000).

    CAS  PubMed  Google Scholar 

  61. Daniel, B., Rangarajan, A., Mukherjee, G., Vallikad, E. & Krishna, S. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J. Gen. Virol. 78, 1095–1101 (1997).

    CAS  PubMed  Google Scholar 

  62. Gray, G. E. et al. Human ligands of the Notch receptor. Am. J. Pathol. 154, 785–794 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zagouras, P., Stifani, S., Blaumueller, C. M., Carcangiu, M. L. & Artavanis-Tsakonas, S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl Acad. Sci. USA 92, 6414–6418 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Talora, C., Sgroi, D. C., Crum, C. P. & Dotto, G. P. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 16, 2252–2263 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, L. et al. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int. J. Gynecol. Cancer 17, 1283–1292 (2007).

    CAS  PubMed  Google Scholar 

  66. Yao, J., Duan, L., Fan, M., Yuan, J. & Wu, X. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells: involvement of nuclear factor kappa B inhibition. Int. J. Gynecol. Cancer 17, 502–510 (2007).

    CAS  PubMed  Google Scholar 

  67. Tamura, K. et al. Stress response gene ATF3 is a target of c-myc in serum-induced cell proliferation. EMBO J. 24, 2590–2601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Boggs, K., Henderson, B. & Reisman, D. RBP-Jκ binds to and represses transcription of the p53 tumor suppressor gene. Cell Biol. Int. 33, 318–324 (2009).

    CAS  PubMed  Google Scholar 

  69. Ban, J. et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res. 68, 7100–7109 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Riggi, N. & Stamenkovic, I. The biology of Ewing sarcoma. Cancer Lett. 254, 1–10 (2007).

    CAS  PubMed  Google Scholar 

  71. Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell Physiol. 194, 237–255 (2003).

    CAS  PubMed  Google Scholar 

  72. Huang, Q. et al. Identification of p53 regulators by genome-wide functional analysis. Proc. Natl Acad. Sci. USA 101, 3456–3461 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Small, D. et al. Notch activation suppresses fibroblast growth factor-dependent cellular transformation. J. Biol. Chem. 278, 16405–16413 (2003).

    CAS  PubMed  Google Scholar 

  74. Ishikawa, Y., Onoyama, I., Nakayama, K. I. & Nakayama, K. Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7. Oncogene 27, 6164–6174 (2008).

    CAS  PubMed  Google Scholar 

  75. Qi, R. et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 63, 8323–8329 (2003).

    CAS  PubMed  Google Scholar 

  76. Duan, L., Yao, J., Wu, X. & Fan, M. Growth suppression induced by Notch1 activation involves Wnt-β-catenin down-regulation in human tongue carcinoma cells. Biol. Cell 98, 479–490 (2006).

    CAS  PubMed  Google Scholar 

  77. Henning, K. et al. Notch1 activation reduces proliferation in the multipotent hematopoietic progenitor cell line FDCP-mix through a p53-dependent pathway but Notch1 effects on myeloid and erythroid differentiation are independent of p53. Cell Death Differ. 15, 398–407 (2008).

    CAS  PubMed  Google Scholar 

  78. Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94 (2004).

    CAS  PubMed  Google Scholar 

  79. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nature Med. 14, 290–298 (2008).

    CAS  PubMed  Google Scholar 

  80. Purow, B. W. et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 29, 918–925 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Deb, S. P., Munoz, R. M., Brown, D. R., Subler, M. A. & Deb, S. Wild-type human p53 activates the human epidermal growth factor receptor promoter. Oncogene 9, 1341–1349 (1994).

    CAS  PubMed  Google Scholar 

  82. Ludes-Meyers, J. H. et al. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol. Cell. Biol. 16, 6009–6019 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sasaki, Y. et al. The p53 family member genes are involved in the Notch signal pathway. J. Biol. Chem. 277, 719–724 (2002).

    CAS  PubMed  Google Scholar 

  84. Das, H. K. Transcriptional regulation of the presenilin-1 gene: implication in Alzheimer's disease. Front. Biosci. 13, 822–832 (2008).

    CAS  Google Scholar 

  85. Pastorcic, M. & Das, H. K. Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene. J. Biol. Chem. 275, 34938–34945 (2000).

    CAS  PubMed  Google Scholar 

  86. Amson, R. et al. Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc. Natl Acad. Sci. USA 97, 5346–5350 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Roperch, J. P. et al. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nature Med. 4, 835–838 (1998).

    CAS  PubMed  Google Scholar 

  88. Devgan, V., Mammucari, C., Millar, S. E., Brisken, C. & Dotto, G. P. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 19, 1485–1495 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lohr, K., Moritz, C., Contente, A. & Dobbelstein, M. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem. 278, 32507–32516 (2003).

    PubMed  Google Scholar 

  90. Laws, A. M. & Osborne, B. A. p53 regulates thymic Notch1 activation. Eur. J. Immunol. 34, 726–734 (2004).

    CAS  PubMed  Google Scholar 

  91. Thelu, J., Rossio, P. & Favier, B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol. 2, 7 (2002).

    PubMed  PubMed Central  Google Scholar 

  92. Mandinova, A. et al. The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J. 27, 1243–1254 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yugawa, T. et al. Regulation of Notch1 gene expression by p53 in epithelial cells. Mol. Cell. Biol. 27, 3732–3742 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Armstrong, B. K. & Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B 63, 8–18 (2001).

    CAS  PubMed  Google Scholar 

  95. de Gruijl, F. R. Skin cancer and solar UV radiation. Eur. J. Cancer 35, 2003–2009 (1999).

    CAS  PubMed  Google Scholar 

  96. Lee, J. H. et al. Acute effects of UVB radiation on the proliferation and differentiation of keratinocytes. Photodermatol. Photoimmunol. Photomed. 18, 253–261 (2002).

    CAS  PubMed  Google Scholar 

  97. Alimirah, F., Panchanathan, R., Davis, F. J., Chen, J. & Choubey, D. Restoration of p53 expression in human cancer cell lines upregulates the expression of Notch1: implications for cancer cell fate determination after genotoxic stress. Neoplasia 9, 427–434 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Secchiero, P. et al. Nutlin-3 upregulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feed-back anti-apoptotic mechanism. Blood 113, 4300–4308 (2009).

    CAS  PubMed  Google Scholar 

  99. Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    CAS  PubMed  Google Scholar 

  100. Lefort, K. & Dotto, G. P. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin. Cancer Biol. 14, 374–386 (2004).

    CAS  PubMed  Google Scholar 

  101. Koster, M. I. & Roop, D. R. The role of p63 in development and differentiation of the epidermis. J. Dermatol. Sci. 34, 3–9 (2004).

    CAS  PubMed  Google Scholar 

  102. McKeon, F. p63 and the epithelial stem cell: more than status quo? Genes Dev. 18, 465–469 (2004).

    CAS  PubMed  Google Scholar 

  103. Westfall, M. D. & Pietenpol, J. A. p63: molecular complexity in development and cancer. Carcinogenesis 25, 857–864 (2004).

    CAS  PubMed  Google Scholar 

  104. Levrero, M. et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J. Cell Sci. 113, 1661–1670 (2000).

    CAS  PubMed  Google Scholar 

  105. Ross, D. A. & Kadesch, T. Consequences of Notch-mediated induction of Jagged1. Exp. Cell Res. 296, 173–182 (2004).

    CAS  PubMed  Google Scholar 

  106. Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83, 1091–1100 (1995).

    CAS  PubMed  Google Scholar 

  107. Perera, R. J. et al. Defining the transcriptome of accelerated and replicatively senescent keratinocytes reveals links to differentiation, interferon signaling, and Notch related pathways. J. Cell Biochem. 98, 394–408 (2006).

    CAS  PubMed  Google Scholar 

  108. Zhang, L. & Pagano, J. S. Structure and function of IRF-7. J. Interferon Cytokine Res. 22, 95–101 (2002).

    PubMed  Google Scholar 

  109. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    CAS  PubMed  Google Scholar 

  110. Servant, M. J., Tenoever, B. & Lin, R. Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function. J. Interferon Cytokine Res. 22, 49–58 (2002).

    CAS  PubMed  Google Scholar 

  111. Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA 95, 2307–2312 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. van Hogerlinden, M., Rozell, B. L., Ahrlund-Richter, L. & Toftgard, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling. Cancer Res. 59, 3299–3303 (1999).

    CAS  PubMed  Google Scholar 

  113. Lena, A. M. et al. miR-203 represses 'stemness' by repressing ΔNp63. Cell Death Differ. 15, 1187–1195 (2008).

    CAS  PubMed  Google Scholar 

  114. Yi, R., Poy, M. N., Stoffel, M. & Fuchs, E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 452, 225–229 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Thatcher, E. J., Flynt, A. S., Li, N., Patton, J. R. & Patton, J. G. miRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev. Dyn. 236, 2172–2180 (2007).

    CAS  PubMed  Google Scholar 

  116. Yoo, A. S. & Greenwald, I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310, 1330–1333 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Laurikkala, J. et al. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133, 1553–1563 (2006).

    CAS  PubMed  Google Scholar 

  118. Okuyama, R. et al. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene 26, 4478–4488 (2007).

    CAS  PubMed  Google Scholar 

  119. Truong, A. B. & Khavari, P. A. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 6, 295–299 (2007).

    CAS  PubMed  Google Scholar 

  120. Moriyama, M. et al. Multiple roles of Notch signaling in the regulation of epidermal development. Dev. Cell 14, 594–604 (2008).

    CAS  PubMed  Google Scholar 

  121. Candi, E. et al. ΔNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc. Natl Acad. Sci. USA 104, 11999–12004 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu, L. et al. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nature Genet. 26, 484–489 (2000).

    CAS  PubMed  Google Scholar 

  123. Petcherski, A. G. & Kimble, J. Mastermind is a putative activator for Notch. Curr. Biol. 10, R471–R473 (2000).

    CAS  PubMed  Google Scholar 

  124. Oswald, F. et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell. Biol. 21, 7761–7774 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C. & Jones, K. A. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev. 16, 1397–1411 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wilson, J. J. & Kovall, R. A. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124, 985–996 (2006).

    CAS  PubMed  Google Scholar 

  127. Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006).

    CAS  PubMed  Google Scholar 

  128. McElhinny, A. S., Li, J. L. & Wu, L. Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27, 5138–5147 (2008).

    CAS  PubMed  Google Scholar 

  129. Zhao, Y. et al. The notch regulator MAML1 interacts with p53 and functions as a coactivator. J. Biol. Chem. 282, 11969–11981 (2007).

    CAS  PubMed  Google Scholar 

  130. Saint Just Ribeiro, M., Hansson, M. L. & Wallberg, A. E. A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem. J. 404, 289–298 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Yogosawa, S., Miyauchi, Y., Honda, R., Tanaka, H. & Yasuda, H. Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Biochem. Biophys. Res. Commun. 302, 869–872 (2003).

    CAS  PubMed  Google Scholar 

  132. Colaluca, I. N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    CAS  PubMed  Google Scholar 

  133. Peus, D., Hamacher, L. & Pittelkow, M. R. EGF-receptor tyrosine kinase inhibition induces keratinocyte growth arrest and terminal differentiation. J. Invest. Dermatol. 109, 751–756 (1997).

    CAS  PubMed  Google Scholar 

  134. Kalyankrishna, S. & Grandis, J. R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol. 24, 2666–2672 (2006).

    CAS  PubMed  Google Scholar 

  135. Lacouture, M. E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Rev. Cancer 6, 803–812 (2006).

    CAS  Google Scholar 

  136. Osipo, C. et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor. Oncogene 27, 5019–5032 (2008).

    CAS  PubMed  Google Scholar 

  137. Piccolo, S. p53 regulation orchestrates the TGF-β response. Cell 133, 767–769 (2008).

    CAS  PubMed  Google Scholar 

  138. Blokzijl, A. et al. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163, 723–728 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Itoh, F. et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 23, 541–551 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zavadil, J., Cermak, L., Soto-Nieves, N. & Bottinger, E. P. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155–1165 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Niimi, H., Pardali, K., Vanlandewijck, M., Heldin, C. H. & Moustakas, A. Notch signaling is necessary for epithelial growth arrest by TGF-β. J. Cell Biol. 176, 695–707 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol. 19, 3485–3495 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Pei, X. H., Nakanishi, Y., Takayama, K., Bai, F. & Hara, N. Benzo[a]pyrene activates the human p53 gene through induction of nuclear factor κB activity. J. Biol. Chem. 274, 35240–35246 (1999).

    CAS  PubMed  Google Scholar 

  144. Lee, H. O., Lee, J. H., Kim, T. Y. & Lee, H. Regulation of ΔNp63α by tumor necrosis factor-α in epithelial homeostasis. FEBS J. 274, 6511–6522 (2007).

    CAS  PubMed  Google Scholar 

  145. Bash, J. et al. Rel/NF-κB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors. EMBO J. 18, 2803–2811 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Osipo, C., Golde, T. E., Osborne, B. A. & Miele, L. A. Off the beaten pathway: the complex cross talk between Notch and NF-κB. Lab. Invest. 88, 11–17 (2008).

    CAS  PubMed  Google Scholar 

  147. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Shamloula, H. K. et al. rugose (rg), a Drosophila A kinase anchor protein, is required for retinal pattern formation and interacts genetically with multiple signaling pathways. Genetics 161, 693–710 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133 metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111–2120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Jones, P. H., Simons, B. D. & Watt, F. M. Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell 1, 371–381 (2007).

    CAS  PubMed  Google Scholar 

  151. Malhotra, S. & Kincade, P. W. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 4, 27–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Okuyama, R., LeFort, K. & Dotto, G. P. A dynamic model of keratinocyte stem cell renewal and differentiation: role of the p21WAF1/Cip1 and Notch1 signaling pathways. J. Investig. Dermatol. Symp. Proc. 9, 248–252 (2004).

    CAS  PubMed  Google Scholar 

  153. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lahav, G. The strength of indecisiveness: oscillatory behavior for better cell fate determination. Sci. STKE 2004, pe55 (2004).

    PubMed  Google Scholar 

  155. Lahav, G. Oscillations by the p53-Mdm2 feedback loop. Adv. Exp. Med. Biol. 641, 28–38 (2008).

    CAS  PubMed  Google Scholar 

  156. Giudicelli, F. & Lewis, J. The vertebrate segmentation clock. Curr. Opin. Genet. Dev. 14, 407–414 (2004).

    CAS  PubMed  Google Scholar 

  157. Lewis, J. From signals to patterns: space, time, and mathematics in developmental biology. Science 322, 399–403 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank C. Brisken and C. Missero for careful reading of the manuscript and J. Aster and I. Screpanti for useful feedback. I apologize to authors whose work was not directly quoted owing to space limitations and the complexity involved. This work was supported by US National Institutes of Health grants AR054856 and AR39190 the Swiss National Foundation and a grant from the European Union (Epistem, Sixth Framework Programme, LSHB-CT-2005-019067).

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

G. Paolo Dotto's homepages

G. Paolo Dotto's homepages

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dotto, G. Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer 9, 587–595 (2009). https://doi.org/10.1038/nrc2675

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing