Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The scientific contributions of M. Judah Folkman to cancer research

Abstract

Dr Judah Folkman was frequently described as a highly compassionate physician who served his patients not only by performing surgery and offering them comfort and reassurance, but also by working tirelessly in the laboratory to find new approaches to the treatment of disease. His dedication to understanding the role of angiogenesis, the formation of new blood vessels, in human disease has given rise to new treatments for several diseases, including inflammatory diseases, vision-threatening diseases of the eye and, as will be emphasized in this Perspective, cancer.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2: The principle of anti-angiogenic agents.
Figure 3: The development of bioassays for analysing angiogenesis.
Figure 4: Angiogenesis regulation is a balance between activation and inhibition.
Figure 5: Publications on angiogenesis.

References

  1. Folkman, M. J., Long, D. M. Jr & Becker, F. F. Tumor growth in organ culture. Surg. Forum 13, 81–83 (1962).

    CAS  PubMed  Google Scholar 

  2. Folkman, J., Long, D. M. Jr & Becker, F. F. Growth and metastasis of tumor in organ culture. Cancer 16, 453–467 (1963).

    CAS  Article  PubMed  Google Scholar 

  3. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  Article  PubMed  Google Scholar 

  4. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cavallo, T., Sade, R., Folkman, J. & Cotran, R. S. Tumor angiogenesis. Rapid induction of endothelial mitoses demonstrated by autoradiography. J. Cell Biol. 54, 408–420 (1972).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov. 3, 391–400 (2004).

    CAS  Article  Google Scholar 

  7. Boucher, Y., Leunig, M. & Jain, R. K. Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266 (1996).

    CAS  PubMed  Google Scholar 

  8. Hall, A. P. The role of angiogenesis in cancer. Comp. Clin. Path. 13, 95–99 (2005).

    Article  Google Scholar 

  9. Ide, A. G., Baker, N. H., Warren, S. L. Vascularization of the brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891–899 (1939).

    Google Scholar 

  10. Algire, G. H., Chalkley, H. W., Legallais, F. Y. & Park, H. D. Vascular reactions of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl Cancer Inst. 6, 73–85 (1945).

    Article  Google Scholar 

  11. Greenblatt, M. & Shubi, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl Cancer Inst. 41, 111–124 (1968).

    CAS  PubMed  Google Scholar 

  12. Ehrmann, R. L. & Knoth, M. Choriocarcinoma. Transfilter stimulation of vasoproliferation in the hamster cheek pouch. Studied by light and electron microscopy. J. Natl Cancer Inst. 41, 1329–1341 (1968).

    CAS  PubMed  Google Scholar 

  13. Cavallo, T., Sade, R., Folkman, J. & Cotran, R. S. Ultrastructural autoradiographic studies of the early vasoproliferative response in tumor angiogenesis. Am. J. Pathol. 70, 345–362 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gimbrone, M. A. Jr, Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J. Natl Cancer Inst. 50, 219–228 (1973).

    Article  PubMed  Google Scholar 

  15. Gimbrone, M. A. Jr, Cotran, R. S., Leapman, S. B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl Cancer Inst. 52, 413–427 (1974).

    Article  PubMed  Google Scholar 

  16. Folkman, J. & Long, D. M. The use of silicone rubber as a carrier for prolonged drug therapy. J. Surg. Res. 4, 139–142 (1964).

    CAS  Article  PubMed  Google Scholar 

  17. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    CAS  Article  PubMed  Google Scholar 

  18. Auerbach, R., Kubai, L., Knighton, D. & Folkman, J. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol. 41, 391–394 (1974).

    CAS  Article  PubMed  Google Scholar 

  19. Sade, R. M., Folkman, J. & Cotran, R. S. DNA synthesis in endothelium of aortic segments in vitro. Exp. Cell Res. 74, 297–306 (1972).

    CAS  Article  PubMed  Google Scholar 

  20. Gimbrone, M. A. Jr, Cotran, R. S. & Folkman, J. Endothelial regeneration: studies with human endothelial cells in culture. Ser. Haematol. 6, 453–455 (1973).

    PubMed  Google Scholar 

  21. Gimbrone, M. A. Jr, Cotran, R. S. & Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60, 673–684 (1974).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Folkman, J., Haudenschild, C. C. & Zetter, B. R. Long-term culture of capillary endothelial cells. Proc. Natl Acad. Sci. USA 76, 5217–5221 (1979).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Folkman, J. & Haudenschild, C. Angiogenesis in vitro. Nature 288, 551–556 (1980).

    CAS  Article  PubMed  Google Scholar 

  24. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst. 82, 4–6 (1990).

    CAS  Article  PubMed  Google Scholar 

  25. Ausprunk, D. H., Falterman, K. & Folkman, J. The sequence of events in the regression of corneal capillaries. Lab. Invest. 38, 284–294 (1978).

    CAS  PubMed  Google Scholar 

  26. Brem, S., Brem, H., Folkman, J., Finkelstein, D. & Patz, A. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res. 36, 2807–2812 (1976).

    CAS  PubMed  Google Scholar 

  27. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Shing, Y. et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296–1299 (1984).

    CAS  Article  PubMed  Google Scholar 

  29. Klagsbrun, M., Sasse, J., Sullivan, R. & Smith, J. A. Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc. Natl Acad. Sci. USA 83, 2448–2452 (1986).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Gospodarowicz, D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249, 123–127 (1974).

    CAS  Article  PubMed  Google Scholar 

  31. Gospodarowicz, D., Brown, K. D., Birdwell, C. R. & Zetter, B. R. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J. Cell Biol. 77, 774–788 (1978).

    CAS  Article  PubMed  Google Scholar 

  32. Relf, M. et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor b-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969 (1997).

    CAS  PubMed  Google Scholar 

  33. Langer, R., Conn, H., Vacanti, J., Haudenschild, C. & Folkman, J. Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc. Natl Acad. Sci. USA 77, 4331–4335 (1980).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Moses, M. A., Sudhalter, J. & Langer, R. Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410 (1990).

    CAS  Article  PubMed  Google Scholar 

  35. Roy, R., Zhang, B. & Moses, M. A. Making the cut: protease-mediated regulation of angiogenesis. Exp. Cell Res. 312, 608–622 (2006).

    CAS  Article  PubMed  Google Scholar 

  36. Taylor, S. & Folkman, J. Protamine is an inhibitor of angiogenesis. Nature 297, 307–312 (1982).

    CAS  Article  PubMed  Google Scholar 

  37. Crum, R., Szabo, S. & Folkman, J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230, 1375–1378 (1985).

    CAS  Article  PubMed  Google Scholar 

  38. Ingber, D. et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348, 555–557 (1990).

    CAS  Article  PubMed  Google Scholar 

  39. D'Amato, R. J., Lin, C. M., Flynn, E., Folkman, J. & Hamel, E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl Acad. Sci. USA 91, 3964–3968 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Voest, E. E. et al. Inhibition of angiogenesis in vivo by interleukin 12. J. Natl Cancer Inst. 87, 581–586 (1995).

    CAS  Article  PubMed  Google Scholar 

  41. O'Reilly, M. S., Pirie-Shepherd, S., Lane, W. S. & Folkman, J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285, 1926–1928 (1999).

    CAS  Article  PubMed  Google Scholar 

  42. Kisker, O. et al. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia 5, 32–40 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Beecken, W. D. et al. An endogenous inhibitor of angiogenesis derived from a transitional cell carcinoma: clipped 2-glycoprotein-I. Ann. Surg. Oncol. 13, 1241–1251 (2006).

    Article  PubMed  Google Scholar 

  44. Folkman, J. Endogenous angiogenesis inhibitors. APMIS 112, 496–507 (2004).

    CAS  Article  PubMed  Google Scholar 

  45. D'Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA 91, 4082–4085 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Kumar, S. & Rajkumar, S. V. Thalidomide and lenalidomide in the treatment of multiple myeloma. Eur. J. Cancer 42, 1612–1622 (2006).

    CAS  Article  PubMed  Google Scholar 

  47. Folkman, J. In Tumor Angiogenesis (eds Marme, D. & Fusenig, N.) 1–28 (Springer, Berlin, 2008).

    Book  Google Scholar 

  48. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    CAS  Article  PubMed  Google Scholar 

  49. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    CAS  Article  PubMed  Google Scholar 

  50. Folkman, J. Antiangiogenesis in cancer therapy — endostatin and its mechanisms of action. Exp. Cell Res. 312, 594–607 (2006).

    CAS  Article  PubMed  Google Scholar 

  51. Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L. & Folkman, J. The generation of endostatin is mediated by elastase Cancer Res. 59, 6052–6056 (1999).

    CAS  PubMed  Google Scholar 

  52. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).

    CAS  Article  PubMed  Google Scholar 

  53. O'Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692 (1996).

    CAS  Article  PubMed  Google Scholar 

  54. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  PubMed  Google Scholar 

  55. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105, R15–R24 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Emmenegger, U. & Kerbel, R. S. Five years of clinical experience with metronomic chemotherapy: achievements and perspectives. Onkologie 30, 606–608 (2007).

    PubMed  Google Scholar 

  57. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002).

    CAS  Article  Google Scholar 

  58. Kieran, M. W. et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J. Pediatr. Hematol. Oncol. 27, 573–581 (2005).

    Article  PubMed  Google Scholar 

  59. Bottini, A. et al. Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J. Clin. Oncol. 24, 3623–3628 (2006).

    CAS  Article  PubMed  Google Scholar 

  60. Garcia, A. A. et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J. Clin. Oncol. 26, 76–82 (2008).

    CAS  Article  PubMed  Google Scholar 

  61. Tapper, D., Langer, R., Bellows, A. R. & Folkman, J. Angiogenesis capacity as a diagnostic marker for human eye tumors. Surgery 86, 36–40 (1979).

    CAS  PubMed  Google Scholar 

  62. Chodak, G. W., Haudenschild, C., Gittes, R. F. & Folkman, J. Angiogenic activity as a marker of neoplastic and preneoplastic lesions of the human bladder. Ann. Surg. 192, 762–771 (1980).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Chodak, G. W., Scheiner, C. J. & Zetter, B. R. Urine from patients with transitional-cell carcinoma stimulates migration of capillary endothelial cells. N. Engl. J. Med. 305, 869–874 (1981).

    CAS  Article  PubMed  Google Scholar 

  64. Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P. & Folkman, J. Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J. Natl Cancer Inst. 85, 241–242 (1993).

    CAS  Article  PubMed  Google Scholar 

  65. Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991).

    CAS  Article  PubMed  Google Scholar 

  66. Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W. & Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vermeulen, P. B. et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur. J. Cancer 38, 1564–1579 (2002).

    CAS  Article  PubMed  Google Scholar 

  68. Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111, 1227–1233 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Cervi, D. et al. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 111, 1201–1207 (2008).

    CAS  Article  PubMed  Google Scholar 

  70. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nature Rev. Drug Discov. 6, 273–286 (2007).

    CAS  Article  Google Scholar 

  71. Shojaei, F. & Ferrara, N. Antiangiogenesis to treat cancer and intraocular neovascular disorders. Lab. Invest. 87, 227–230 (2007).

    CAS  Article  PubMed  Google Scholar 

  72. Folkman, J. Is angiogensis an organizing principle in biology and medicine? J. Pediatr. Surg. 42, 1–11 (2007).

    Article  PubMed  Google Scholar 

  73. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  Article  PubMed  Google Scholar 

  74. Ausprunk, D. H., Knighton, D. R. & Folkman, J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am. J. Pathol. 79, 597–618 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ribatti, D. The first evidence of the tumor-induced angiogenesis in vivo by using the chorioallantoic membrane dated 1913. Leukemia 18, 1350–1351 (2004).

    Article  PubMed  Google Scholar 

  76. Satchi-Fainaro, R. et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nature Med. 10, 255–261 (2004).

    CAS  Article  PubMed  Google Scholar 

  77. Benny, O. et al. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nature Biotech. 29 Jun 2008 (doi:10.1038/nbt1415).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute

bevacizumab

cyclophosphamide

thalidomide

vinblastine

FURTHER INFORMATION

Additional information on Dr Folkman and Dr Zetter

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zetter, B. The scientific contributions of M. Judah Folkman to cancer research. Nat Rev Cancer 8, 647–654 (2008). https://doi.org/10.1038/nrc2458

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2458

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing