Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Banking on cord blood stem cells

Abstract

Umbilical cord blood gifted to non-profit public cord blood banks is now routinely used as an alternative source of haematopoietic stem cells for allogeneic transplantation for children and adults with cancer, bone marrow failure syndromes, haemoglobinopathies and many genetic metabolic disorders. Because of the success and outcomes of public cord banking, many companies now provide private cord banking services. However, in the absence of any published transplant evidence to support autologous and non-directed family banking, commercial cord banks currently offer a superfluous service.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Barker, J. N. & Wagner, J. E. Umbilical-cord blood transplantation for the treatment of cancer. Nature Rev. Cancer 3, 526–532 (2003).

    Article  CAS  Google Scholar 

  2. Gluckman, E. & Rocha, V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy 7, 219–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Rubinstein, P. Why cord blood? Human Immunol. 67, 398–404 (2006).

    Article  CAS  Google Scholar 

  4. Cord Blood Registry [online] (2007).

  5. Annas, G. J. Waste and longing — The legal status of placental-blood banking. N. Engl. J. Med. 340, 1521–1524 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Burgio, G. R. & Locatelli, F. Transplant of bone marrow and cord blood hematopoietic stem cells in pediatric practice, revisited according to the fundamental principles of bioethics. Bone Marrow Transplant. 19, 1163–1168 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Fisk, N. M., Roberts, I. A., Markwald, R. & Mironov, V. Can routine commercial cord blood banking be scientifically and ethically justified? PLoS Med. 2, e44 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sugarman, J. et al. Ethical issues in umbilical cord blood banking. Working Group on Ethical Issues in Umbilical Cord Blood Banking. JAMA 278, 938–943 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. American Academy of Pediatrics WGOCBB. Cord blood banking for potential future transplantation: subject review. American Academy of Pediatrics. Work Group on Cord Blood Banking. Pediatrics 104, 116–118 (1999).

  10. Puigdomench-Rosell, P., Virt, G., for the European Group on Ethics in Science and New Technologies. Ethical aspects of umbilical cord blood banking. European Group on Ethics in Science and New Technologies, European Commission [online] (2004).

  11. Barker, J. N. & Wagner, J. E. Umbilical cord blood transplantation: current practice and future innovations. Crit. Rev. Oncol. Hematol. 48, 35–43 (2003).

    Article  PubMed  Google Scholar 

  12. Benito, A. I., Diaz, M. A., Gonzalez-Vicent, M., Sevilla, J. & Madero, L. Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant. 33, 675–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Eapen, M. et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. [see comment] Lancet 369, 1947–1954 (2007).

    Article  PubMed  Google Scholar 

  14. Hwang, W. Y. et al. A meta-analysis of unrelated donor umbilical cord blood transplantation versus unrelated donor bone marrow transplantation in adult and pediatric patients. Biol. Blood Marrow Transplant. 13, 444–453 (2007).

    Article  PubMed  Google Scholar 

  15. Laughlin, M. J. et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N. Engl. J. Med. 351, 2265–2275 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Mao, P. et al. Umbilical cord blood transplant for adult patients with severe aplastic anemia using anti-lymphocyte globulin and cyclophosphamide as conditioning therapy. Bone Marrow Transplant. 33, 33–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Ooi, J. et al. Unrelated cord blood transplantation for adult patients with de novo acute myeloid leukemia. Blood 103, 489–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Ooi, J. et al. Unrelated cord blood transplantation for adult patients with acute lymphoblastic leukemia. Leukemia 18, 1905–1907 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Rocha, V. et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 97, 2962–2971 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Rubinstein, P. & Stevens, C. E. Placental blood for bone marrow replacement: the New York Blood Center's program and clinical results. Bailliere's Best Pract. Clin. Haematol. 13, 565–584 (2000).

    Article  CAS  Google Scholar 

  21. Rubinstein, P. et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N. Engl. J. Med. 339, 1565–1577 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. American Academy of Pediatrics Section on Hematology Oncology, American Academy of Pediatrics Section on allergy Immunology, Lubin, B. H. & Shearer, W. T. Cord blood banking for potential future transplantation. Pediatrics 119, 165–170 (2007).

    Article  PubMed  Google Scholar 

  23. Armson, B. A. & Maternal/Fetal Medicine Committee SOOAGOC. Umbilical cord blood banking: implications for perinatal care providers. J. Obstet. Gynaecol. Can. 27, 263–290 (2005) [erratum appears in J. Obstet. Gynaecol. Can. 27, 673].

    Article  PubMed  Google Scholar 

  24. Eaton, L. Many cord blood banks' claims are unfounded, says Royal College. BMJ 332, 1411 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Edozien, L. C. NHS maternity units should not encourage commercial banking of umbilical cord blood. BMJ 333, 801–804 (2006) [see comment].

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kurtzberg, J., Lyerly, A. D. & Sugarman, J. Untying the Gordian knot: policies, practices, and ethical issues related to banking of umbilical cord blood. J. Clin. Invest. 115, 2592–2597 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steinbrook, R. The cord-blood-bank controversies. N. Engl. J. Med. 351, 2255–2257 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan, M., Browett, P. & Patton, N. Private umbilical cord blood banking: a biological insurance of dubious future benefit! N. Z. Med. J. 118, U1260 (2005) [see comment].

    PubMed  Google Scholar 

  29. van Rood, J. J. & Oudshoorn, M. Eleven million donors in Bone Marrow Donors Worldwide! Time for reassessment? Bone Marrow Transplant. 41, 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Rocha, V. & Locatelli, F. Searching for alternative hematopoietic stem cell donors for pediatric patients. Bone Marrow Transplant. 41, 207–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Gluckman, E. et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 321, 1174–1178 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Wall, D. A. Issues in the quality of umbilical cord blood stem cells for transplantation: challenges in cord blood banking quality management. Transfusion 45, 826–828 (2005).

    Article  PubMed  Google Scholar 

  33. Anonymous. Umbilical cord blood banking Richard Branson's way. Lancet 369, 437 (2007).

  34. Garderet, L. et al. The umbilical cord blood αβ T-cell repertoire: characteristics of a polyclonal and naive but completely formed repertoire. Blood 91, 340–346 (1998).

    CAS  PubMed  Google Scholar 

  35. Rocha, V. et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N. Engl. J. Med. 342, 1846–1854 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Rocha, V., Gluckman, E. & Eurocord and European Blood and Marrow Transplant Group. Clinical use of umbilical cord blood hematopoietic stem cells. Biol. Blood Marrow Transplant. 12, 34–41 (2006).

    Article  PubMed  Google Scholar 

  37. Schoemans, H. et al. Adult umbilical cord blood transplantation: a comprehensive review. Bone Marrow Transplant. 38, 83–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Broxmeyer, H. E. Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy 7, 209–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Wexler, S. A. et al. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol. 121, 368–374 (2003).

    Article  PubMed  Google Scholar 

  40. He, Q., Wan, C. & Li, G. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells 25, 69–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lennard, A. L. & Jackson, G. H. Stem cell transplantation. BMJ 321, 433–437 (2000). [erratum appears in BMJ 321, 1331]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prasad, V. K. & Kurtzberg, J. Emerging trends in transplantation of inherited metabolic diseases. Bone Marrow Transplant. 41, 99–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Gluckman, E. & Wagner, J. E. Hematopoietic stem cell transplantation in childhood inherited bone marrow failure syndrome. Bone Marrow Transplant. 41, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Bhatia, M. & Walters, M. C. Hematopoietic cell transplantation for thalassemia and sickle cell disease: past, present and future. Bone Marrow Transplant. 41, 109–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Dvorak, C. C. & Cowan, M. J. Hematopoietic stem cell transplantation for primary immunodeficiency disease. Bone Marrow Transplant. 41, 119–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Hahn, T. et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in children: an evidence-based review. Biol. Blood Marrow Transplant. 11, 823–861 (2005).

    Article  PubMed  Google Scholar 

  47. Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006) [see comment].

    Article  CAS  PubMed  Google Scholar 

  48. Carella, A. M. & Bregni, M. Current role of allogeneic stem cell transplantation in breast cancer. Ann. Oncol. 18, 1591–1593 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Rocha, V. et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N. Engl. J. Med. 351, 2276–2285 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ferreira, E., Pasternak, J., Bacal, N., de Campos Guerra, J. C. & Mitie Watanabe, F. Autologous cord blood transplantation. Bone Marrow Transplant 24, 1041 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Friedrich, M. J. Growing role for umbilical cord blood. JAMA 292, 2453–2454 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hayani, A., Lampeter, E., Viswanatha, D., Morgan, D. & Salvi, S. N. First report of autologous cord blood transplantation in the treatment of a child with leukemia. Pediatrics 119, e296–300 (2007).

    Article  PubMed  Google Scholar 

  53. Fish., J. D. & Grupp, S. A. Stem cell transplantation for neuroblastoma. Bone Marrow Transplant. 41, 159–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Philip, T. et al. 1070 myeloablative megatherapy procedures followed by stem cell rescue for neuroblastoma: 17 years of European experience and conclusions. European Group for Blood and Marrow Transplant Registry Solid Tumour Working Party. Eur. J. Cancer 33, 2130–2135 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Hartmann, O. et al. Prognostic factors in metastatic neuroblastoma in patients over 1 year of age treated with high-dose chemotherapy and stem cell transplantation: A multivariate analysis in 218 patients treated in a single institution. Bone Marrow Transplant. 23, 789–795 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. George, R. E. et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J. Clin. Oncol. 24, 2891–2896 (2006).

    Article  PubMed  Google Scholar 

  57. Burdach, S. et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann. Oncol. 11, 1451–1462 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Burke, M. J., Walterhouse, D. O., Jacobsohn, D. A., Duerst, R. E. & Kletzel, M. Tandem high-dose chemotherapy with autologous peripheral hematopoietic progenitor cell rescue as consolidation therapy for patients with high-risk Ewing family tumors. Pediatric Blood Cancer 49, 196–198 (2007) [see comment].

    Article  PubMed  Google Scholar 

  59. Dunkel, I. J. & Finlay, J. L. High-dose chemotherapy with autologous stem cell rescue for brain tumors. Critical Rev. Oncol. Hematol. 41, 197–204 (2002).

    Article  Google Scholar 

  60. Fagioli, F. et al. High-dose thiotepa and etoposide in children with poor-prognosis brain tumors. Cancer 100, 2215–2221 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Lin, T. S. & Copelan, E. A. Autologous stem cell transplantation for non-Hodgkin's lymphoma. Curr. Hematol. Rep. 2, 310–315 (2003).

    PubMed  Google Scholar 

  62. Meyers, P. A. et al. High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis. J. Clin. Oncol. 19, 2812–2820 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Thorarinsdottir, H. K. et al. Outcome for children <4 years of age with malignant central nervous system tumors treated with high-dose chemotherapy and autologous stem cell rescue. Pediatric Blood Cancer 48, 278–284 (2007).

    Article  PubMed  Google Scholar 

  64. Bradley, M. B. & Cairo, M. S. Stem cell transplantation for pediatric lymphoma: past, present and future. Bone Marrow Transplant. 41, 149–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Marachelian, A., Butturini, A. & Finlay, J. Myeloablative chemotherapy with autologous hematopoietic progenitor cell rescue for childhood central nervous system tumors. Bone Marrow Transplant. 41, 167–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Kremens, B. et al. High-dose chemotherapy with autologous stem cell rescue in children with nephroblastoma. Bone Marrow Transplant. 30, 893–898 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Fagioli, F. et al. High-dose chemotherapy in the treatment of relapsed osteosarcoma: an Italian sarcoma group study. J. Clin. Oncol. 20, 2150–2156 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Koscielniak, E. et al. Do patients with metastatic and recurrent rhabdomyosarcoma benefit from high-dose therapy with hematopoietic rescue? Report of the German/Austrian Pediatric Bone Marrow Transplantation Group. Bone Marrow Transplant. 19, 227–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Urban, C. et al. Autologous cord blood transplantation in a child with acute lymphoblastic leukemia and central nervous system relapse [comment]. Pediatrics 119, 1042–1043; author reply 1043 (2007).

    Article  PubMed  Google Scholar 

  70. Zipursky, A. Fetal origin of leukemia and autologous cord blood transfusions. Pediatric Res. 47, 574 (2000).

    Article  CAS  Google Scholar 

  71. Ando, T. et al. Donor cell-derived acute myeloid leukemia after unrelated umbilical cord blood transplantation. Leukemia 20, 744–745 (2006) [see comment].

    Article  CAS  PubMed  Google Scholar 

  72. Fraser, C. J. et al. First report of donor cell-derived acute leukemia as a complication of umbilical cord blood transplantation. Blood 106, 4377–4380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Greaves, M. Cord blood donor leukaemia in recipients. Leukemia 20, 1633–1664 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Matsunaga, T., et al. Donor cell derived acute myeloid leukemia after allogeneic cord blood transplantation in a patient with adult T-cell lymphoma. Am. J. Hematol. 79, 294–298 (2005).

    Article  PubMed  Google Scholar 

  75. Greaves, M. Pre-natal origins of childhood leukemia. Rev. Clin. Exp. Hematol. 7, 233–245 (2003).

    CAS  PubMed  Google Scholar 

  76. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nature Rev. Cancer 3, 1–11 (2003).

    Article  CAS  Google Scholar 

  77. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Biernaux, C., Loos, M., Sels, A., Huez, G. & Stryckmans, P. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86, 3118–3122 (1995).

    CAS  PubMed  Google Scholar 

  79. Biernaux, C., Sels, A., Huez, G. & Stryckmans, P. Very low level of major BCR–ABL expression in blood of some healthy individuals. Bone Marrow Transplant. 17 (Suppl. 3), S45–47 (1996).

    PubMed  Google Scholar 

  80. Bose, S., Deininger, M., Gora-Tybor, J., Goldman, J. M. & Melo, J. V. The presence of typical and atypical BCR–ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92, 3362–3367 (1998).

    CAS  PubMed  Google Scholar 

  81. Pasquini, M. C., Logan, B. R., Verter, F., Horowitz, M. M. & Nietfeld, J. J. The likelihood of hematopoietic stem cell transplantation (HCT) in the United States: implications for umbilical cord blood storage. ASH Ann. Meeting Abstracts 106, 1330 (2005).

    Google Scholar 

  82. Johnson, F. L. Placental blood transplantation and autologous banking — caveat emptor. J. Pediatric Hematol. Oncol. 19, 183–186 (1997).

    Article  CAS  Google Scholar 

  83. Kline, R. D. Whose blood is it, anyway. Sci. Am. 4, 30–37 (2001).

    Google Scholar 

  84. Stiller, C. A. et al. Cancer incidence and survival in European adolescents (1978–1997). Report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42, 2006–2018 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Stiller, C. A. et al. Geographical patterns of childhood cancer incidence in Europe, 1988–1997 Report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42, 1952–1960 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Spix, C., Pastore, G., Sankila, R., Stiller, C. A. & Steliarova-Foucher, E. Neuroblastoma incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42, 2081–2091 (2006).

    Article  PubMed  Google Scholar 

  87. Armand, P. & Antin, J. H. Allogeneic stem cell transplantation for aplastic anemia. Biol. Blood Marrow Transplant. 13, 505–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Fruchtman, S. M. et al. The successful treatment of severe aplastic anemia with autologous cord blood transplantation. Biol. Blood Marrow Transplant. 10, 741–742 (2004).

    Article  PubMed  Google Scholar 

  89. American College of Obstetricians and Gynecologists. Routine storage of umbilical cord blood for potential future transplantation. Int. J. Gynaecol. Obstet. 58, 257–259 (1997).

  90. French National Consultative Ethics Committee for Health and Life Sciences. Umbilical cord blood banks for autologous use or for research. Opinion number 74 [online] (2002).

  91. Royal College of Obstetricians and Gynaecologists Scientific Advisory Committee. Umbilical cord blood banking. Opinion paper 2 revised [online] (2006).

  92. Grewal, S. S., Kahn, J. P., MacMillan, M. L., Ramsay, N. K. & Wagner, J. E. Successful hematopoietic stem cell transplantation for Fanconi anemia from an unaffected HLA-genotype-identical sibling selected using preimplantation genetic diagnosis. Blood 103, 1147–1151 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Mazur, M., Kurtzberg, J., Halperin, E., Ciocci, G. & Szabolcs, P. Transplantation of a child with sickle cell anemia with an unrelated cord blood unit after reduced intensity conditioning. J. Pediatric Hematol. Oncol. 28, 840–844 (2006).

    Article  CAS  Google Scholar 

  94. Picardi, A. et al. Unrelated cord blood transplantation for children with high risk myelodysplastic syndromes. Haematologica 89, ELT08 (2004).

    PubMed  Google Scholar 

  95. Yesilipek, M. A. Stem cell transplantation in hemoglobinopathies. Hemoglobin 31, 251–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Cibelli, J. Development: Is therapeutic cloning dead? Science 318, 1879–1880 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Maherali, N., et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007) [see comment].

    Article  CAS  PubMed  Google Scholar 

  101. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks R. Corbett, A. Turnbull and S. Beasley for their support and advice.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

M. J. Sullivan's homepage

American Society for Blood and Marrow Transplantation (ASBMt)

Bone Marrow Donors Worldwide (BMDW)

Caitlin Raymond International Registry

Center for International Blood and Marrow Transplant Research (CIRBMT)

Cord Blood Forum

Eurocord

European Group for Blood and Marrow Transplantation (EBMT)

Foundation for Accreditation of Cellular Therapies (FACT)

Joint Accreditation Committee

National Marrow Donor Program (NMDP)

Netcord

Parent's Guide to Cord Blood

World Marrow Donor Association

DATABASES

National Cancer Institute

acute lymphocytic leukaemia

graft-versus-host disease

leukaemia

lymphoma

multiple myeloma

neuroblastoma

non-Hodgkin lymphoma

osteosarcoma

rhabdomyosarcoma

Wilms tumour

OMIM

Fanconi anaemia

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sullivan, M. Banking on cord blood stem cells. Nat Rev Cancer 8, 555–563 (2008). https://doi.org/10.1038/nrc2418

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing