Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Survivin, cancer networks and pathway-directed drug discovery

Abstract

Although there is no shortage of potential targets for cancer therapeutics, we know of only a handful of molecules that are differentially expressed in cancer and intersect multiple pathways required for tumour maintenance. Survivin embodies these properties, and orchestrates integrated cellular networks that are essential for tumour cell proliferation and viability. Pursuing the nodal functions of survivin in cancer might lead to the development of global pathway inhibitors with unique therapeutic potential.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Connectivity map of the survivin networks at cell division.
Figure 2: Connectivity map of the survivin networks at cell death.
Figure 3: Connectivity links between the survivin cell division and cell death networks.

References

  1. 1

    Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    CAS  Google Scholar 

  2. 2

    Leaf, C. Why we're losing the war on cancer (and how to win it). Fortune 149, 76–97 (2004).

    PubMed  Google Scholar 

  3. 3

    Sawyers, C. Targeted cancer therapy. Nature 432, 294–297 (2004).

    CAS  PubMed  Google Scholar 

  4. 4

    van der Greef, J. & McBurney, R. N. Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nature Rev. Drug Discov. 4, 961–967 (2005).

    CAS  Google Scholar 

  5. 5

    Citri, A. & Yarden, Y. EGF–ERBB signalling: towards the systems level. Nature Rev. Mol. Cell Biol. 7, 505–516 (2006).

    CAS  Google Scholar 

  6. 6

    Isaacs, J. S., Xu, W. & Neckers, L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3, 213–217 (2003).

    CAS  PubMed  Google Scholar 

  7. 7

    Altieri, D. C. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol. 18, 609–615 (2006).

    CAS  PubMed  Google Scholar 

  8. 8

    Eckelman, B. P., Salvesen, G. S. & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Lens, S. M., Vader, G. & Medema, R. H. The case for Survivin as mitotic regulator. Curr. Opin. Cell Biol. 18, 616–622 (2006).

    CAS  PubMed  Google Scholar 

  10. 10

    Fukuda, S. & Pelus, L. M. Survivin, a cancer target with an emerging role in normal adult tissues. Mol. Cancer Ther. 5, 1087–1098 (2006).

    CAS  PubMed  Google Scholar 

  11. 11

    Stauber, R. H., Mann, W. & Knauer, S. K. Nuclear and cytoplasmic survivin: molecular mechanism, prognostic, and therapeutic potential. Cancer Res. 67, 5999–6002 (2007).

    CAS  PubMed  Google Scholar 

  12. 12

    Mirza, A. et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21, 2613–2622 (2002).

    CAS  PubMed  Google Scholar 

  13. 13

    Esteve, P. O., Chin, H. G. & Pradhan, S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc. Natl Acad. Sci. USA 102, 1000–1005 (2005).

    CAS  PubMed  Google Scholar 

  14. 14

    Verdecia, M. A. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Struct. Biol. 7, 602–608 (2000).

    CAS  PubMed  Google Scholar 

  15. 15

    Fortugno, P. et al. Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J. Cell Sci. 115, 575–585 (2002).

    CAS  PubMed  Google Scholar 

  16. 16

    O'Connor, D. S. et al. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl Acad. Sci. USA 97, 13103–13107 (2000).

    CAS  PubMed  Google Scholar 

  17. 17

    Vong, Q. P., Cao, K., Li, H. Y., Iglesias, P. A. & Zheng, Y. Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310, 1499–1504 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Li, F. & Brattain, M. G. Role of the Survivin gene in pathophysiology. Am. J. Pathol. 169, 1–11 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Velculescu, V. E. et al. Analysis of human transcriptomes. Nature Genet. 23, 387–388 (1999).

    CAS  PubMed  Google Scholar 

  20. 20

    Tran, J. et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc. Natl Acad. Sci. USA 99, 4349–4354 (2002).

    CAS  PubMed  Google Scholar 

  21. 21

    Morgillo, F., Woo, J. K., Kim, E. S., Hong, W. K. & Lee, H. Y. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res. 66, 10100–10111 (2006).

    CAS  PubMed  Google Scholar 

  22. 22

    Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    CAS  Google Scholar 

  23. 23

    Smith, S. D. et al. Urine detection of survivin and diagnosis of bladder cancer. JAMA 285, 324–328 (2001).

    CAS  PubMed  Google Scholar 

  24. 24

    Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nature Rev. Cancer. 5, 876–885 (2005).

    CAS  Google Scholar 

  25. 25

    Carvalho, A., Carmena, M., Sambade, C., Earnshaw, W. C. & Wheatley, S. P. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J. Cell Sci. 116, 2987–2998 (2003).

    CAS  PubMed  Google Scholar 

  26. 26

    Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16, 536–541 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Sampath, S. C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118, 187–202 (2004).

    CAS  Google Scholar 

  28. 28

    Speliotes, E. K., Uren, A., Vaux, D. & Horvitz, H. R. The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol. Cell 6, 211–223 (2000).

    CAS  PubMed  Google Scholar 

  29. 29

    Jones, G., Jones, D., Zhou, L., Steller, H. & Chu, Y. Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J. Biol. Chem. 275, 22157–22165 (2000).

    CAS  PubMed  Google Scholar 

  30. 30

    Walter, D., Wissing, S., Madeo, F. & Fahrenkrog, B. The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J. Cell Sci. 119, 1843–1851 (2006).

    CAS  PubMed  Google Scholar 

  31. 31

    Dohi, T., Beltrami, E., Wall, N. R., Plescia, J. & Altieri, D. C. Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J. Clin. Invest. 114, 1117–1127 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lamb, J. The Connectivity Map: a new tool for biomedical research. Nature Rev. Cancer 7, 54–60 (2007).

    CAS  Google Scholar 

  33. 33

    Adams, R. R., Carmena, M. & Earnshaw, W. C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54 (2001).

    CAS  PubMed  Google Scholar 

  34. 34

    Jeyaprakash, A. A. et al. Structure of a survivin–borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 131, 271–285 (2007).

    CAS  Google Scholar 

  35. 35

    Vanoosthuyse, V., Prykhozhij, S. & Hardwick, K. G. Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol. Biol. Cell 18, 1657–1669 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Stoepel, J., Ottey, M. A., Kurischko, C., Hieter, P. & Luca, F. C. The mitotic exit network Mob1p–Dbf2p kinase complex localizes to the nucleus and regulates passenger protein localization. Mol. Biol. Cell 16, 5465–5479 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Wheatley, S. P., Henzing, A. J., Dodson, H., Khaled, W. & Earnshaw, W. C. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J. Biol. Chem. 279, 5655–5660 (2004).

    CAS  PubMed  Google Scholar 

  38. 38

    Mollinari, C. et al. The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev. Cell 5, 295–307 (2003).

    CAS  PubMed  Google Scholar 

  39. 39

    Sandall, S. et al. A Bir1–Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127, 1179–1191 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ghosh, J. C., Dohi, T., Raskett, C. M., Kowalik, T. F. & Altieri, D. C. Activated checkpoint kinase 2 provides a survival signal for tumor cells. Cancer Res. 66, 11576–11579 (2006).

    CAS  PubMed  Google Scholar 

  41. 41

    Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Okada, H. et al. Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J. Exp. Med. 199, 399–410 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Rosa, J., Canovas, P., Islam, A., Altieri, D. C. & Doxsey, S. J. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol. Biol. Cell 17, 1483–1493 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Allan, L. A. & Clarke, P. R. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol. Cell 26, 301–310 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    O'Connor, D. S., Wall, N. R., Porter, A. C. & Altieri, D. C. A p34cdc2 survival checkpoint in cancer. Cancer Cell 2, 43–54 (2002).

    CAS  PubMed  Google Scholar 

  46. 46

    Goga, A., Yang, D., Tward, A. D., Morgan, D. O. & Bishop, J. M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nature Med. 13, 820–827 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Zhang, T. et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res. 61, 8664–8667 (2001).

    CAS  PubMed  Google Scholar 

  48. 48

    Semba, S. et al. Fhit modulation of the Akt-survivin pathway in lung cancer cells: Fhit-tyrosine 114 (Y114) is essential. Oncogene 25, 2860–2872 (2006).

    CAS  PubMed  Google Scholar 

  49. 49

    Xu, Z. X. et al. Promyelocytic leukemia protein 4 induces apoptosis by inhibition of survivin expression. J. Biol. Chem. 279, 1838–1844 (2004).

    CAS  PubMed  Google Scholar 

  50. 50

    Kim, P. J., Plescia, J., Clevers, H., Fearon, E. R. & Altieri, D. C. Survivin and molecular pathogenesis of colorectal cancer. Lancet 362, 205–209 (2003).

    CAS  PubMed  Google Scholar 

  51. 51

    Gritsko, T. et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin. Cancer Res. 12, 11–19 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Jiang, Y., Saavedra, H. I., Holloway, M. P., Leone, G. & Altura, R. A. Aberrant regulation of survivin by the RB/E2F family of proteins. J. Biol. Chem. 279, 40511–40520 (2004).

    CAS  PubMed  Google Scholar 

  53. 53

    Gu, L., Chiang, K. Y., Zhu, N., Findley, H. W. & Zhou, M. Contribution of STAT3 to the activation of survivin by GM-CSF in CD34+ cell lines. Exp. Hematol. 35, 957–966 (2007).

    CAS  PubMed  Google Scholar 

  54. 54

    Vaira, V. et al. Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene 26, 2678–2684 (2007).

    CAS  PubMed  Google Scholar 

  55. 55

    Asanuma, H. et al. Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Res. 65, 11018–11025 (2005).

    CAS  PubMed  Google Scholar 

  56. 56

    Kang, B. H. & Altieri, D. C. Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein. J. Biol. Chem. 281, 24721–24727 (2006).

    CAS  PubMed  Google Scholar 

  57. 57

    Fortugno, P. et al. Regulation of survivin function by Hsp90. Proc. Natl Acad. Sci. USA 100, 13791–13796 (2003).

    CAS  PubMed  Google Scholar 

  58. 58

    Marusawa, H. et al. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J. 22, 2729–2740 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Dohi, T., Xia, F. & Altieri, D. C. Compartmentalized phosphorylation of IAP by protein kinase A regulates cytoprotection. Mol. Cell 27, 17–28 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Samuel, T. et al. cIAP1 Localizes to the nuclear compartment and modulates the cell cycle. Cancer Res. 65, 210–218 (2005).

    CAS  PubMed  Google Scholar 

  61. 61

    Caldas, H. et al. Survivin splice variants regulate the balance between proliferation and cell death. Oncogene 24, 1994–2007 (2005).

    CAS  PubMed  Google Scholar 

  62. 62

    Sun, C., Nettesheim, D., Liu, Z. & Olejniczak, E. T. Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry 44, 11–17 (2005).

    CAS  PubMed  Google Scholar 

  63. 63

    Song, Z., Yao, X. & Wu, M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J. Biol. Chem. 278, 23130–23140 (2003).

    CAS  PubMed  Google Scholar 

  64. 64

    Ceballos-Cancino, G., Espinosa, M., Maldonado, V. & Melendez-Zajgla, J. Regulation of mitochondrial Smac/DIABLO-selective release by survivin. Oncogene 26, 7569–7575 (2007).

    CAS  PubMed  Google Scholar 

  65. 65

    Wang, H. W., Sharp, T. V., Koumi, A., Koentges, G. & Boshoff, C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J. 21, 2602–2615 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Vogel, C., Hager, C. & Bastians, H. Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Res. 67, 339–345 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    You, R. I. et al. Inhibition of lymphotoxin-β receptor-mediated cell death by survivin-ΔEx3. Cancer Res. 66, 3051–3061 (2006).

    CAS  PubMed  Google Scholar 

  68. 68

    Xia, F. & Altieri, D. C. Mitosis-independent survivin gene expression in vivo and regulation by p53. Cancer Res. 66, 3392–3395 (2006).

    CAS  PubMed  Google Scholar 

  69. 69

    van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Tolcher, A. W. et al. A phase I study of YM155, a novel survivin suppressant, administered by 168 hour continuous infusion to patients with advanced solid tumors (ASCO Annual Meeting abstract). J. Clin. Oncol. 24, 3014 (2006).

    Google Scholar 

  71. 71

    Chang, C. C., Heller, J. D., Kuo, J. & Huang, R. C. Tetra-O-methyl nordihydroguaiaretic acid induces growth arrest and cellular apoptosis by inhibiting Cdc2 and survivin expression. Proc. Natl Acad. Sci. USA 101, 13239–13244 (2004).

    CAS  PubMed  Google Scholar 

  72. 72

    Wobser, M. et al. Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol. Immunother. 55, 1294–1298 (2006).

    CAS  PubMed  Google Scholar 

  73. 73

    Plescia, J. et al. Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7, 457–468 (2005).

    CAS  PubMed  Google Scholar 

  74. 74

    Nakagawa, K. et al. Phase I study of YM155, a first-in-class survivin suppressant, in patients with advanced solid tumors in Japan (ASCO Annual Meeting abstract). J. Clin. Oncol. 25, 3536 (2007).

    Google Scholar 

  75. 75

    Jonkers, J. & Berns, A. Oncogene addiction: sometimes a temporary slavery. Cancer Cell 6, 535–538 (2004).

    CAS  PubMed  Google Scholar 

  76. 76

    Uren, A. G. et al. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol. 10, 1319–1328 (2000).

    CAS  PubMed  Google Scholar 

  77. 77

    Xing, Z., Conway, E. M., Kang, C. & Winoto, A. Essential role of survivin, an inhibitor of apoptosis protein, in T-cell development, maturation, and homeostasis. J. Exp. Med. 199, 69–80 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Jiang, Y. et al. Essential role for survivin in early brain development. J. Neurosci. 25, 6962–6970 (2005).

    CAS  PubMed  Google Scholar 

  79. 79

    Zwerts, F. et al. Lack of endothelial cell survivin causes embryonic defects in angiogenesis, cardiogenesis, and neural tube closure. Blood 109, 4742–4752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Leung, C. G. et al. Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells. J. Exp. Med. 204, 1603–1611 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Chen, J. S. et al. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther. 11, 740–747 (2004).

    CAS  PubMed  Google Scholar 

  82. 82

    Altieri, D.C. Targeted therapy by disabling crossroad signaling networks: the survivin paradigm. Mol. Cancer Ther. 5, 478–482 (2006).

    CAS  PubMed  Google Scholar 

  83. 83

    Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921 (1997).

    CAS  PubMed  Google Scholar 

  84. 84

    Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998).

    CAS  PubMed  Google Scholar 

  85. 85

    Adida, C., Berrebi, D., Peuchmaur, M., Reyes-Mugica, M. & Altieri, D. C. Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351, 882–883 (1998).

    CAS  PubMed  Google Scholar 

  86. 86

    Fraser, A. G., James, C., Evan, G. I. & Hengartner, M. O. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Curr. Biol. 9, 292–301 (1999).

    CAS  Google Scholar 

  87. 87

    Li, F. et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466 (1999).

    CAS  Google Scholar 

  88. 88

    Chantalat, L. et al. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual α-helical extensions. Mol. Cell 6, 183–189 (2000).

    CAS  PubMed  Google Scholar 

  89. 89

    Kanwar, J. R., Shen, W. P., Kanwar, R. K., Berg, R. W. & Krissansen, G. W. Effects of survivin antagonists on growth of established tumors and b7–1 immunogene therapy. J. Natl Cancer Inst. 93, 1541–1552 (2001).

    CAS  PubMed  Google Scholar 

  90. 90

    Mesri, M., Wall, N. R., Li, J., Kim, R. W. & Altieri, D. C. Cancer gene therapy using a survivin mutant adenovirus. J. Clin. Invest. 108, 981–990 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Bao, R. et al. Activation of cancer-specific gene expression by the survivin promoter. J. Natl Cancer Inst. 94, 522–528 (2002).

    CAS  PubMed  Google Scholar 

  92. 92

    Lens, S. M. et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J. 22, 2934–2947 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Dohi, T. et al. An IAP–IAP complex inhibits apoptosis. J. Biol. Chem. 279, 34087–34090 (2004).

    CAS  PubMed  Google Scholar 

  94. 94

    Hirschowitz, E. A. et al. Autologous dendritic cell vaccines for non-small-cell lung cancer. J. Clin. Oncol. 22, 2808–2815 (2004).

    PubMed  Google Scholar 

  95. 95

    Tsuruma, T. et al. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J. Transl. Med. 2, 19 (2004).

    PubMed  PubMed Central  Google Scholar 

  96. 96

    Xiang, R. et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res. 65, 553–561 (2005).

    CAS  PubMed  Google Scholar 

  97. 97

    Idenoue, S. et al. A potent immunogenic general cancer vaccine that targets survivin, an inhibitor of apoptosis proteins. Clin. Cancer Res. 11, 1474–1482 (2005).

    CAS  PubMed  Google Scholar 

  98. 98

    Xia, W. et al. Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res. 66, 1640–1647 (2006).

    CAS  PubMed  Google Scholar 

  99. 99

    Dasgupta, P. et al. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc. Natl Acad. Sci. USA 103, 6332–6337 (2006).

    CAS  PubMed  Google Scholar 

  100. 100

    Taubert, H. et al. Stem cell-associated genes are extremely poor prognostic factors for soft-tissue sarcoma patients. Oncogene 26, 7170–7174 (2007).

    CAS  PubMed  Google Scholar 

  101. 101

    Song, J., Salek-Ardakani, S., So, T. & Croft, M. The kinases aurora B and mTOR regulate the G1–S cell cycle progression of T lymphocytes. Nature Immunol. 8, 64–73 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

I apologize to all the colleagues whose work on survivin could not be cited owing to space constraints. I thank C. W. Lee for discussion and Ingenuity Pathway Analysis. This work was supported by National Institutes of Health grants.

Author information

Affiliations

Authors

Supplementary information

Supplementary information S1 (figure)

Survivin cancer networks (PDF 999 kb)

Related links

Related links

FURTHER INFORMATION

Dario C. Altieri's homepage

Surveillance Epidemiology and End Results

ClinicalTrials.gov

Ingenuity Systems

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Altieri, D. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8, 61–70 (2008). https://doi.org/10.1038/nrc2293

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing