The NCI60 human tumour cell line anticancer drug screen

Abstract

The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The halichondrin B team.
Figure 2: Sample throughput of the NCI60.
Figure 3: Illustration of NCI60 data for bortezomib (Velcade, PS-341, NSC 681239).
Figure 4: Self-organizing map (SOM) projections of bortezomib and structurally related boronic acids.
Figure 5: Self-organizing map (SOM) projections of hypoxia inducible factor 1α (HIF1α) high-throughput screen active compounds.

References

  1. 1

    Boyd, M. R. in Anticancer Drug Development Guide; Preclinical Screening, Clinical Trials, and Approval (eds Teicher, B. A. &Andrews, P. A.) 41–62 (Humana press, Totowa, USa, 2004).

  2. 2

    Nelson-Rees, W. A., Flandermeyer, R. R. & Hawthorne, P. K. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184, 1093–1096 (1974).

  3. 3

    Nelson-Rees, W. A. & Flandermeyer, R. R. Inter and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 195, 1343–1344 (1977).

  4. 4

    Nelson-Rees, W. A. The identification and monitoring of cell line specificity. Prog. Clin. Biol. Res. 26, 25–79 (1978).

  5. 5

    Shoemaker, R. H. et al. Use of the KB Cell Line for In vitro Cytotoxicity Assays. Cancer Treat. Rep. 67, 97 (1983).

  6. 6

    Shoemaker, R. H. et al. Development of human tumor cell line panels for use in disease-oriented drug screening. Prog. Clin. Biol. Res. 276, 265–286 (1988).

  7. 7

    Gazdar, A. F. et al. Establishment of continuous, clonable cultures of small-cell carcinoma of lung which have amine precursor uptake and decarboxylation cell properties. Cancer Res. 40, 3502–3507 (1980).

  8. 8

    Gazdar, A. F., Carney, D. N. & Minna, J. D. The biology of non-small cell lung cancer. Semin. Oncol. 10, 3–19 (1983).

  9. 9

    Gazdar, A. F & Minna, J. D. Cell lines as an investigational tool for the study of biology of small cell lung cancer. Eur. J. Cancer Clin. Oncol. 8, 909–911 (1986).

  10. 10

    Gazdar, A. F., Carney, D. N., Nau, M. M. & Minna, J. D. Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res. 45, 2924–2930 (1985).

  11. 11

    Phelps, R. M. et al. NCI-Navy Medical Oncology Branch cell line data base. J. Cell Biochem. Suppl. 24, 32–91 (1996).

  12. 12

    Pettengill O. S. et al. Isolation and growth characteristics of continuous cell lines from small-cell carcinoma of the lung. Cancer 45 906–918 (1980)

  13. 13

    Stinson, S. F. et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res. 12, 1035–1053 (1992).

  14. 14

    Scherf, U. et al. A cDNA microarray gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2004).

  15. 15

    Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Mol. Pathol. 55, 294–299 (2002).

  16. 16

    Garraway, L. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

  17. 17

    Scudiero, D. A., Monks, A. & Sausville, E. A. Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J. Natl Cancer Inst. 90, 862 (1998).

  18. 18

    Roschke, A. V. et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 63, 8634–8647 (2003).

  19. 19

    Shoemaker, R. H. et al. in Human Tumor Xenografts in Anticancer Drug Development. (eds Wynograd, B., Peckham, M. G. & Pinedo, H. M.) 115–120 (European School of Oncology Monograph, Milan,1988).

  20. 20

    Gazdar, A. Shoemaker, R. H., Mayo, J. Donovan, P. & Fine, D. in Immune Deficient Animals in Biomedical Research (eds Rygaard, J., Brunner, N., Graem, N. & Sprang-Thomsen, M.) 277–280 (Karger, Basal, 1987).

  21. 21

    Shoemaker, R. H. et al. Practical spontaneous metastasis model for in vivo therapeutic studies using a human melanoma. Cancer Res. 51, 2837–2841 (1991).

  22. 22

    Shoemaker, R. H., Smythe, A. M., Lin, W., Baslachak, M. S. & Boyd, M. R. Evaluation of metastatic human tumor burden and response to therapy in a nude mouse xenograft model using a molecular probe for repetitive human DNA sequences. Cancer Res. 52, 2791–2796 (1992).

  23. 23

    Arguello, F. et al. Two serologic markers to monitor the engraftment, growth and treatment response of human leukemias in SCID mice. Blood 87, 4325–4332 (1996).

  24. 24

    Hollingshead, M. et al. A potential role for imaging technology in anticancer efficacy evaluations. Eur. J. Cancer 40, 890–898 (2004).

  25. 25

    McLemore, T. L. et al. Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res. 47, 5132–5140 (1987).

  26. 26

    Mosmann, T. Rapid colormetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

  27. 27

    Alley, M. C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589–601 (1988).

  28. 28

    Paull, K. D. et al. The synthesis of XTT: a new tetrazolium reagent bioreducible to a water soluable formazan. J. Heterocycl. Chem. 25, 911–914 (1988).

  29. 29

    Scudiero, D. A. et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833 (1988).

  30. 30

    Vistica, D. T. et al. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 51, 2515–2520 (1991).

  31. 31

    Finlay G. J., Baguley B. C. & Wilson W. R. A semiautomated microculture method for investigating growth inhibitory effects of cytotoxic compounds on exponentially growing carcinoma cells. Anal. Biochem. 139, 272–277 (1984).

  32. 32

    Skehan, P. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl Cancer Inst. 82, 1107–1112 (1990).

  33. 33

    Rubinstein, L. V. et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl Cancer Inst. 2, 1113–1118 (1990).

  34. 34

    Monks, A. et al. Feasibility of a high-hlux anticancer drug screen utilizing a diverse panel of cultured human tumor cell lines. J. Natl Cancer Inst. 83, 757–766 (1991).

  35. 35

    Weislow, O. S. et al. New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. J. Natl Cancer Inst. 81, 577–586 (1989).

  36. 36

    Sausville, E. A. & Shoemaker, R. H. Role of the National Cancer Institute in acquired immunodeficiency syndrome-related drug discovery. J. Natl Cancer Inst. 28, 55–57 (2001).

  37. 37

    Paull, K. D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 1088–1092 (1989).

  38. 38

    Boyd, M. R. & Paull, K. D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 34, 91–109 (1995).

  39. 39

    Wu, L. et al. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res. 52, 3029–3034 (1991).

  40. 40

    Lee, J. S. et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46, 627–638 (1994).

  41. 41

    Alvarez, M. et al. Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen. J. Clin. Invest. 95, 2205–2214 (1995).

  42. 42

    Izquierdo, M. A. et al. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int. J. Cancer. 65, 230–237 (1996).

  43. 43

    Acton, E. M. et al. Anticancer specificity of some ellipticinium salts against human brain tumors in vitro. J. Med. Chem. 8, 2185–2189 (1994).

  44. 44

    Vistica, D. T., Kenney, S., Hursey, M. & Boyd, M. R. Role of membrane potential in the accumulation of quaternized ellipticines by human tumor cell lines. J. Pharmacol. Exp. Ther. 279, 1018–1025 (1996).

  45. 45

    Shoemaker, R. H., Balaschak, M. S., Alexander, M. R. & Boyd, M. R. Therapeutic activity of 9-chloro-2-methylellipticinium acetate in an orthotopic model of human brain cancer. Oncol. Rep. 2, 663–667 (1995).

  46. 46

    Arguello, F. et al. Preclinical evaluation of 9-chloro-2-methylellipticinium acetate alone and in combination with conventional anticancer drugs for the treatment of human brain tumor xenografts. J. Cancer Res. Clin. Oncol. 124, 19–26 (1998).

  47. 47

    Monks, A., Scudiero, D. A., Johnson, G. S., Paull, K. D. & Sausville, E. A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 12, 533–541 (1997).

  48. 48

    Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 266, 15882–15889 (1991).

  49. 49

    Fodstad, O., Breistol, K., Pettit, G. R., Shoemaker, R. H. & Boyd, M. R. Comparative antitumor activities of halichondrins and vinblastine against human tumor xenografts. J. Exp. Ther. Oncol. 1, 119–125 (1996).

  50. 50

    Towle, M. J. et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 61, 1013–1021 (2001).

  51. 51

    Seletsky, B. M. et al. Structurally simplified macrolactone analogues of halichondrin B. Bioorg. Med. Chem. Lett. 14, 5547–5550 (2004).

  52. 52

    Boyd, M. R., Shoemaker, R. H., Cragg, G. M. & Suffness, M. in Pharmaceuticals and the Sea (eds Jefford, C. W., Rinehart, K. L. & Shield, L. S.) 115–120 (European School of Oncology Monograph, Milan, 1998).

  53. 53

    Cragg, G. M. et al. Ethnobotany and drug discovery: the experience of the US National Cancer Institute. Ciba Found. Symp. 185, 178–190 (1994).

  54. 54

    Cruz-Monserrate, Z. et al. Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol. Pharmacol. 63, 1273–1280 (2003).

  55. 55

    Williams D. E. et al. Spirastrellolide A: revised structure, progress toward the relative configuration, and inhibition of protein phosphatase 2A. Org. Lett. 6, 2607–2610 (2004).

  56. 56

    Houssen, W. E. & Jaspars, M. 4-Hydroxybenzoyl derivative from the aqueous extract of the hydroid Campanularia sp. J. Nat. Prod. 68, 453–455 (2005).

  57. 57

    Cao, S., Foster, C., Lazo, J. S. & Kingston, D. G. Four diterpenoid inhibitors of Cdc25B phosphatase from a marine anemone. Bioorg. Med. Chem. 13, 5830–5834 (2005).

  58. 58

    Schroeder, F. C., Kau, T. R., Silver, P. A. & Clardy, J. The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J. Nat. Prod. 68, 574–576 (2005).

  59. 59

    Segraves, N. L. & Crews, P. Investigation of brominated tryptophan alkaloids from two thorectidae sponges: Thorectandra and Smenospongia. J. Nat. Prod. 68, 1484–1488 (2005).

  60. 60

    Bokesch, H. R. et al. Alertenone, a dimer of suberosenone from Alertigorgia sp. J. Nat. Prod. 62, 633–635 (1999).

  61. 61

    Fuller, R. W. et al. Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga Portieria hornemannii. J. Med. Chem. 37, 4407–4411 (1994).

  62. 62

    Galinis, D. L., McKee, T. C., Pannell, L. K., Cardellina, J. H. II, & Boyd, M. R. Lobatamides A and B, novel cytotoxic macrolides from the tunicate Aplidium lobatum. J. Org. Chem. 62, 8968–8969 (1997).

  63. 63

    Erickson, K. L., Beutler, J. A., Cardellina, J. H. II & Boyd, M. R. Salicylihalamides A and B, Novel Cytotoxic Macrolides from the Marine Sponge Haliclona sp. J. Org. Chem. 62, 8188–8192 (1997).

  64. 64

    Boyd, M. R. et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-atpases. J. Pharmacol. Exp. Ther. 297, 114–120 (2001).

  65. 65

    Xie, X. S. et al. Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1. J. Biol. Chem. 279, 19755–19763 (2004).

  66. 66

    Hollingshead, M. G. et al. In vivo cultivation of tumor cells in hollow fibers. Life Sci. 57, 131–141 (1999).

  67. 67

    Weinstein, J. N. et al. Neural computing in cancer drug development: predicting mechanism of action. Science 258, 447–451 (1992).

  68. 68

    van Osdol, W. W., Myers, T. G., Paull, K. D., Kohn, K. W. & Weinstein, J. N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Natl Cancer Inst. 86, 1853–1859 (1994).

  69. 69

    Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

  70. 70

    Keskin, O. et al. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure. Anticancer Drug Des. 15, 79–98 (2000).

  71. 71

    Rabow, A. A., Shoemaker, R. H., Sausville, E. A. & Covell, D. G. Mining the National Cancer Institute's tumor-screening database: identification of compounds with similar cellular activities. J. Med. Chem. 45, 818–840 (2000).

  72. 72

    Wallqvist, A., Rabow, A. A., Shoemaker, R. H., Sausville, E. A. & Covell, D. G. Linking the growth inhibition response from the National Cancer Institute's anticancer screen to gene expression levels and other molecular target data. Bioinformatics 19, 2212–2224 (2003).

  73. 73

    Wallqvist, A., Rabow, A. A, Shoemaker, R. H., Sausville, E. A. & Covell, D. G. Establishing connections between microarray expression data and chemotherapeutic cancer pharmacology. Mol. Cancer Ther. 1, 311–320 (2002).

  74. 74

    Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

  75. 75

    Duesbery, N. S. & Vande Woude, G. F. Anthrax lethal factor causes proteolytic inactivation of mitogen-activated protein kinase kinase. J. Appl. Microbiol. 87, 289–293 (1999).

  76. 76

    Chopra, A. P., Boone, S. A., Liang, X. & Duesbery, N. S. Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J. Biol. Chem. 278, 9402–9406 (2003).

  77. 77

    Bodart, J. F., Chopra, A., Liang, X. & Duesbery, N. Anthrax, MEK and cancer. Cell Cycle 1, 10–15 (2002).

  78. 78

    Panchal, R. G. et al. Identification of small molecule inhibitors of anthrax lethal factor. Nature Struct. Mol. Biol. 11, 67–72 (2004).

  79. 79

    Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

  80. 80

    Adams, J. Proteasome inhibition in cancer: development of PS-341. Semin. Oncol. 28, 613–619 (2001).

  81. 81

    Holbeck, S. L. & Sausville, E. A. in Proteasome Inhibitors in Cancer Therapy. (ed. Adams, J.) 99–107 (Humana Press, Totowa, USA, 2004).

  82. 82

    Szakacs, G. et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 6, 129–137 (2004).

  83. 83

    Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2005).

  84. 84

    Rapisarda, A. et al. Identification of small molecule inhibitors of HIF-1 transcriptional activation pathway. Cancer Res. 62, 1943–1950 (2002).

  85. 85

    Rapsidarda, A. et al. Topoisomerase I mediated inhibition of hypoxia inducible factor-1 (HIF-1): mechanism and therapeutic implications. Cancer Res. 64, 1475–1482 (2004).

  86. 86

    Decosterd, L. A. Gustafson, K. R., Cardellina, J. H. II, Cragg, G. M & Boyd, M. R. The differential cytotoxicity of cardenolides from Thevetia ahouia. Pytother. 8, 74–77 (1994).

  87. 87

    Naasani, I., Seimiya, H., Yamori, T. & Tsuruo, T. FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res. 15, 4004–4011 (1999).

  88. 88

    Dan, S. et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res. 62, 1139–1147 (2002).

  89. 89

    Yamori, T. Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics. Cancer Chemother. Pharmacol. 52, (Suppl. 1) S74–S79 (2003).

  90. 90

    Nakatsu, N. et al. Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays. Mol. Cancer Ther. 4, 399–412 (2005).

  91. 91

    Yaguchi, S. et al. Antitumor activity of ZSTK474, a new phosphatidylinositol-3 kinase inhibitor. J. Natl Cancer Inst. 98, 545–556 (2006).

Download references

Acknowledgements

This paper is dedicated to the memory of K. D. Paull, a friend and collaborator to the many investigators involved in the development and operation of the NCI60. I thank J. Weinstein for critical review of the manuscript, and D. Scudiero, A. Monks, J. Laudeman and T. Silvers for their assistance in the generation of the illustrations.

Author information

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

leukaemia

Lung

colon

Breast

prostate

renal

melanoma

ovarian

gastric carcinoma

FURTHER INFORMATION

3D mind website

American Type Culture Collection

Cancer Cell website

Databases Correlation

Developmental Therapeutics Program public website

Genomics and Bioinformatics Group

Molecular Targets Development Program

Natural Products Branch

PubChem

R*A*N*D section of the DTP website

Report of the National Cancer Institute Developmental Therapeutics Program Review Group

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shoemaker, R. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6, 813–823 (2006). https://doi.org/10.1038/nrc1951

Download citation

Further reading