Opinion | Published:

Migrating cancer stem cells — an integrated concept of malignant tumour progression

Nature Reviews Cancervolume 5pages744749 (2005) | Download Citation

Subjects

Abstract

The dissemination of tumour cells is the prerequisite of metastases and is correlated with a loss of epithelial differentiation and the acquisition of a migratory phenotype, a hallmark of malignant tumour progression. A stepwise, irreversible accumulation of genetic alterations is considered to be the responsible driving force. But strikingly, metastases of most carcinomas recapitulate the organization of their primary tumours. Although current models explain distinct and important aspects of carcinogenesis, each alone can not explain the sum of the cellular changes apparent in human cancer progression. We suggest an extended, integrated model that is consistent with all aspects of human tumour progression — the 'migrating cancer stem (MCS)-cell' concept.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003).

  2. 2

    Thiery, J. P. Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003).

  3. 3

    Brabletz, T. et al. Variable β-catenin expression in colorectal cancer indicates tumour progression driven by the tumour environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).

  4. 4

    Barker, N. & Clevers, H. Tumour environment: a potent driving force in colorectal cancer? Trends Mol. Med. 7, 535–537 (2001).

  5. 5

    Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

  6. 6

    Morin, P. J. et al. Activation of β-catenin–Tcf signalling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

  7. 7

    Hülsken, J. & Behrens, J. The Wnt signalling pathway. J. Cell Sci. 115, 3977–3978 (2002).

  8. 8

    Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

  9. 9

    Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signalling. Nature Genet. 32, 594–605 (2002).

  10. 10

    Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signalling by a pharmacological GSK-3-specific inhibitor. Nature Med. 10, 55–63 (2004).

  11. 11

    Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

  12. 12

    He, X. C. et al. BMP signalling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signalling. Nature Genet. 36, 1117–1121 (2004).

  13. 13

    Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumours in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

  14. 14

    Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545. (2001).

  15. 15

    Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

  16. 16

    Angerer, L. & Angerer, R. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients. Semin. Cell Dev. Biol. 10, 327–334 (1999).

  17. 17

    Liebner, S. et al. β-catenin is required for endothelial–mesenchymal transformation during heart cushion development in the mouse. J. Cell Biol. 166, 359–367 (2004).

  18. 18

    Muller, T., Bain, G., Wang, X. & Papkoff, J. Regulation of epithelial cell migration and tumour formation by β-catenin signalling. Exp. Cell Res. 280, 119–133 (2002).

  19. 19

    Kim, K., Lu, Z. & Hay, E. D. Direct evidence for a role of β-catenin/LEF-1 signalling pathway in induction of EMT. Cell Biol. Int. 26, 463–476 (2002).

  20. 20

    Mariadason, J. M. et al. Down-regulation of β-catenin TCF signalling is linked to colonic epithelial cell differentiation. Cancer Res. 61, 3465–3471 (2001).

  21. 21

    Naishiro, Y. et al. Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of β-catenin/T-cell factor 4-mediated gene transactivation. Cancer Res. 61, 2751–2758 (2001).

  22. 22

    Conacci-Sorrell, M. et al. Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of β-catenin signalling, Slug, and MAPK. J. Cell Biol. 163, 847–857 (2003).

  23. 23

    Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

  24. 24

    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

  25. 25

    Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumour stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

  26. 26

    Jordan, C. T. Cancer stem cell biology: from leukemia to solid tumours. Curr. Opin. Cell Biol. 16, 708–712 (2004).

  27. 27

    Xue, C., Plieth, D., Venkov, C., Xu, C. & Neilson, E. G. The gatekeeper effect of epithelial–mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. 63, 3386–3394 (2003).

  28. 28

    Savagner, P. Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays 23, 912–923 (2001).

  29. 29

    Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

  30. 30

    Eger, A. et al. β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23, 2672–2680 (2004).

  31. 31

    Brabletz, T., Herrmann, K., Jung, A., Faller, G. & Kirchner, T. Expression of nuclear β-catenin and c-myc is correlated with tumour size but not with proliferative activity of colorectal adenomas. Am. J. Pathol. 156, 865–870 (2000).

  32. 32

    Kirchner, T. & Brabletz, T. Patterning and nuclear β-catenin expression in the colonic adenoma–carcinoma sequence: analogies with embryonic gastrulation. Am. J. Pathol. 157, 1113–1121 (2000).

  33. 33

    Jung, A. et al. The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear β-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am. J. Pathol. 159, 1613–1617 (2001).

  34. 34

    Brabletz, T. et al. Downregulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I: an active role for the tumour environment in malignant tumour progression. Cancer Res. 64, 6973–6977 (2004).

  35. 35

    He, T.-C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

  36. 36

    Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96, 5522–5527 (1999).

  37. 37

    Tetsu, O. & McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

  38. 38

    Zhang, T. et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res. 61, 8664–8667 (2001).

  39. 39

    Kim, P. J., Plescia, J., Clevers, H., Fearon, E. R. & Altieri, D. C. Survivin and molecular pathogenesis of colorectal cancer. Lancet 362, 205–209 (2003).

  40. 40

    Gavert, N. et al. L1, a novel target of b-catenin signalling, transforms tumour cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633–642 (2005).

  41. 41

    Hlubek, F., Jung, A., Kotzor, N., Kirchner, T. & Brabletz, T. Expression of the invasion factor laminin γ2 in colorectal carcinomas is regulated by β-catenin. Cancer Res. 61, 8089–8093 (2001).

  42. 42

    Ueno, H., Murphy, J., Jass, J. R., Mochizuki, H. & Talbot, I. C. Tumour 'budding' as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40, 127–132 (2002).

  43. 43

    Ueno, H. et al. A new prognostic staging system for rectal cancer. Ann. Surg. 240, 832–839 (2004).

  44. 44

    Oloumi, A., McPhee, T. & Dedhar, S. Regulation of E-cadherin expression and b-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim. Biophys. Acta 1691, 1–15 (2004).

  45. 45

    Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signalling pathways. J. Cell Biol. 156, 299–313 (2002).

  46. 46

    Grunert, S., Jechlinger, M. & Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature Rev. Mol. Cell Biol. 4, 657–665 (2003).

  47. 47

    Vega, S. et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18, 1131–1143 (2004).

  48. 48

    Kajita, M., McClinic, K. N. & Wade, P. A. Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Mol. Cell Biol. 24, 7559–7566 (2004).

  49. 49

    Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumour metastasis. Cell 117, 927–939 (2004).

  50. 50

    Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113, 207–219 (2003).

  51. 51

    Blanco, M. J. et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241–3246 (2002).

  52. 52

    Nakajima, S. et al. N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clin. Cancer Res. 10, 4125–4133 (2004).

  53. 53

    Rosivatz, E. et al. Differential expression of the epithelial–mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am. J. Pathol. 161, 1881–1891 (2002).

  54. 54

    McAlhany, S. J. et al. Decreased stromal expression and increased epithelial expression of WFDC1/ps20 in prostate cancer is associated with reduced recurrence-free survival. Prostate 61, 182–191 (2004).

  55. 55

    Nieto, M. A. The Snail superfamily of zinc-finger transcription factors. Nature Rev. Mol. Cell Biol. 3, 155–166 (2002).

  56. 56

    Pantel, K. & Woelfle, U. Micrometastasis in breast cancer and other solid tumours. J. Biol. Regul. Homeost. Agents 18, 120–125 (2004).

Download references

Acknowledgements

The authors would like to acknowledge funding from the German Research Council (DFG), the National Genomic Research Network (NGFN), the Deutsche Krebshilfe and the Sander-Stiftung.

Author information

Affiliations

  1. Department of Pathology, University of Erlangen, Krankenhausstr. 8-10, Erlangen, 91054, Germany

    • Thomas Brabletz
    • , Andreas Jung
    • , Simone Spaderna
    • , Falk Hlubek
    •  & Thomas Kirchner

Authors

  1. Search for Thomas Brabletz in:

  2. Search for Andreas Jung in:

  3. Search for Simone Spaderna in:

  4. Search for Falk Hlubek in:

  5. Search for Thomas Kirchner in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Thomas Brabletz.

Related links

Related links

DATABASES

Entrez Gene

APC

CCND1

CDKN2A

EGF

HGF

ILK

L1CAM

LAMC2

SIP1

SLUG

SNAI1L1

TCF4

TCF8

TWIST1

National Cancer Institute

breast cancer

colorectal cancer

About this article

Publication history

Issue Date

DOI

https://doi.org/10.1038/nrc1694

Further reading