Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Negative gravitropism in plant roots

Abstract

Plants are capable of orienting their root growth towards gravity in a process termed gravitropism, which is necessary for roots to grow into soil, for water and nutrient acquisition and to anchor plants. Here we show that root gravitropism depends on the novel protein, NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR). In both Medicago truncatula and Arabidopsis thaliana, loss of NGR reverses the direction of root gravitropism, resulting in roots growing upward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: M. truncatula ngr mutants.
Figure 2: A. thaliana ngr mutants.

Similar content being viewed by others

References

  1. Darwin, C. & Darwin, F. (John Murray, 1880).

  2. Chen, R. et al. Proc. Natl Acad. Sci. USA 95, 15112–15117 (1998).

    Article  CAS  Google Scholar 

  3. Luschnig, C., Gaxiola, R. A., Grisafi, P. & Fink, G. R. Genes. Dev. 12, 2175–2187 (1998).

    Article  CAS  Google Scholar 

  4. Muller, A. et al. EMBO J. 17, 6903–6911 (1998).

    Article  CAS  Google Scholar 

  5. Dharmasiri, S. et al. Science 312, 1218–1220 (2006).

    Article  CAS  Google Scholar 

  6. Marchant, A. et al. EMBO J. 18, 2066–2073 (1999).

    Article  CAS  Google Scholar 

  7. Band, L. R. et al. Proc. Natl Acad. Sci. USA 109, 4668–4673 (2012).

    Article  CAS  Google Scholar 

  8. Swarup, R. et al. Nat. Cell. Biol. 7, 1057–1065 (2005).

    Article  CAS  Google Scholar 

  9. Chen, J. et al. Proc. Natl Acad. Sci. USA 107, 10754–10759 (2010).

    Article  CAS  Google Scholar 

  10. Cheng, X. et al. New Phytol. 201, 1065–1076 (2014).

    Article  CAS  Google Scholar 

  11. Nystedt, B. et al. Nature 497, 579–584 (2013).

    Article  CAS  Google Scholar 

  12. Yoshihara, T., Spalding, E. P. & Iino, M. Plant J. 74, 267–279 (2013).

    Article  CAS  Google Scholar 

  13. Uga, Y. et al. Nat. Genet. 45, 1097–1102 (2013).

    Article  CAS  Google Scholar 

  14. Kenrick, P. & Strullu-Derrien, C. Plant Physiol. 166, 570–580 (2014).

    Article  Google Scholar 

  15. Dong, Z. et al. Plant Physiol. 163, 1306–1322 (2013).

    Article  CAS  Google Scholar 

  16. Yoshihara, T. & Iino, M. Plant Cell. Physiol. 48, 678–688 (2007).

    Article  CAS  Google Scholar 

  17. Li, P. et al. Cell Res. 17, 402–410 (2007).

    Article  CAS  Google Scholar 

  18. Benedito, V. A. et al. Plant J. 55, 504–513 (2008).

    Article  CAS  Google Scholar 

  19. Tadege, M. et al. Plant Cell 23, 2125–2142 (2011).

    Article  CAS  Google Scholar 

  20. Ge, L., Peng, J., Berbel, A., Madueno, F. & Chen, R. Plant Physiol. 164, 216–228 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Laxmi and Y. Tang for the microarray experiments, G. Li for Medicago crossing, E. Blancaflor for microscopy, X. Cheng and J. Wen for reverse genetics screen. We thank K. Mysore for providing Medicago Tnt1 lines and ABRC for Arabidopsis T-DNA lines. Funding for Medicago genetic resources was provided by National Science Foundation (IOS-1127155) to R. C. Funding of this work was provided by The Samuel Roberts Noble Foundation, Inc.

Author information

Authors and Affiliations

Authors

Contributions

L.G. and R.C. designed and conducted experiments, collected data, performed data analyses and wrote the manuscript.

Corresponding author

Correspondence to Rujin Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–3. (PDF 5306 kb)

Supplementary Video 1

Root gravitropic responses of wild-type and atngr1,2,3 mutants. (MP4 12401 kb)

Supplementary Video 2

Root tip curvature responses of wild-type and atngr1,2,3 under gravistimulation. (MP4 3371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, L., Chen, R. Negative gravitropism in plant roots. Nature Plants 2, 16155 (2016). https://doi.org/10.1038/nplants.2016.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing