Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change perils for dioecious plant species

Abstract

Climate change, particularly increased aridity, poses a significant threat to plants and the biotic communities they support. Dioecious species may be especially vulnerable to climate change given that they often exhibit spatial segregation of the sexes, reinforced by physiological and morphological specialization of each sex to different microhabitats. In dimorphic species, the overexpression of a trait by one gender versus the other may become suppressed in future climates. Data suggest that males will generally be less sensitive to increased aridity than co-occurring females and, consequently, extreme male-biased sex ratios are possible in a significant number of populations. The effects of male-biased sex ratios are likely to cascade to dependent community members, especially those that are specialized on one sex.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The ratio of male to female leaf stomatal conductance (g), net carbon assimilation (A) and measurements of productivity.
Figure 2: Expected relationship between changing sex ratios (Δ) and the rate of climate change combined with population generation time.

References

  1. Heilbuth, J. C. Lower species richness in dioecious clades. Am. Nat. 156, 221–241 (2000).

    PubMed  Google Scholar 

  2. Matallama, G., Wendt, T., Araujo, D. S. D. & Scarano, F. R. High abundance of dioecious plants in a tropical coastal vegetation. Am. J. Bot. 92, 1513–1519 (2005).

    Google Scholar 

  3. Gehring, C. A. & Whitham, T. G. Reduced mycorrhizae on Juniperus monosperma with mistletoe: the influence of environmental stress and tree gender on a plant parasite and a plant-fungal mutualism. Oecologia 89, 298–303 (1992).

    PubMed  Google Scholar 

  4. Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nature Rev. Gen. 7, 510–523 (2006).

    CAS  Google Scholar 

  5. Holm, J. A., Miller, C. J. & Cropper Jr, W. P. Population dynamics of the dioecious Amazonian palm Mauritia flexuosa: simulation analysis of sustainable harvesting. Biotropica 40, 550–558 (2008).

    Google Scholar 

  6. Kuaraksa, C., Elliot, S. & Hossaert-Mckey, M. The phenology of dioecious Ficus spp. tree species and its importance for forest restoration. For. Ecol. Manag. 265, 82–93 (2012).

    Google Scholar 

  7. Petry, W. K. et al. Mechanisms underlying plant sexual dimorphism in multi-trophic arthropod communities. Ecology 94, 2055–2065 (2013).

    PubMed  Google Scholar 

  8. Darwin, C. The Different Forms of Flowers on Plants of the Same Species (John Murray, 1877).

    Google Scholar 

  9. Charlesworth, D. Plant sex determination and sex chromosomes. Heredity 88, 94–101 (2002).

    PubMed  Google Scholar 

  10. Dawson, T. E. & Geber, M. A. in Gender and Dimorphism of Flowering Plants (eds Geber, M. A., Dawson, T. E. & Delph, L. F. ) 175–215 (Springer, 1999).

    Google Scholar 

  11. Obeso, J. R. The costs of reproduction in plants. New Phytol. 155, 321–348 (2002).

    Google Scholar 

  12. Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Sys. 37, 637–669 (2006).

    Google Scholar 

  13. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS  Article  Google Scholar 

  14. Bierzychudek, P. & Eckhart, V. Spatial segregation of the sexes of dioecious plants. Am. Nat. 132, 34–43 (1988).

    Google Scholar 

  15. Field, D. L., Pickup, M. & Barrett, C. H. Comparative analysis of sex-ratio variation in dioecious flowering plants. Evolution 67, 661–672 (2012).

    PubMed  Google Scholar 

  16. Sinclair, J. R., Emlen, J. & Freeman, D. C. Biased sex ratios in plants: theory and trends. Bot. Rev. 78, 63–86 (2012).

    Google Scholar 

  17. Barrett, S. C. H., Yakimoowski, S. B., Field, D. L. & Pickup, M. Ecological genetics of sex ratios of plant populations. Phil. Trans. R. Soc. Lond. B 365, 2549–2557 (2010).

    Google Scholar 

  18. Dawson, T. E. & Ehleringer, J. R. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in box elder, Acer negundo. Ecology 74, 798–815 (1993).

    Google Scholar 

  19. Delph, L. F. in Gender and Dimorphism of Flowering Plants (eds Geber, M. A., Dawson, T. E., Delph, L. F. ) 149–174 (Springer, 1999).

    Google Scholar 

  20. Freeman, D. C., Klikoff, L. G. & Harper, K. T. Differential resource utilization by the sexes of dioecious plants. Science 193, 597–599 (1976).

    CAS  PubMed  Google Scholar 

  21. Charnov, E. T. The Theory of Sex Allocation (Princeton Univ. Press, 1982).

    Google Scholar 

  22. de Jong, T. J., Van Batenburg, F. H. D. & Van Dijk, J. Seed sex ratio in dioecious plants depends on relative dispersal of pollen and seeds: an example using chessboard simulation model. J. Evol. Biol. 15, 373–379 (2002).

    Google Scholar 

  23. Freeman, D. C., Doust, J. L., El-Keblawy, A., Miglia, K. J. & McArthur, E. D. Sexual selection and inbreeding avoidance in the evolution of dioecy. Bot. Rev. 63, 65–92 (1997).

    Google Scholar 

  24. Bull, J. J. Sex ratio evolution when fitness varies. Heredity 46, 9–26 (1981).

    Google Scholar 

  25. Bull, J. J. & Charnov, E. L. How fundamental are Fisherian sex ratios? Oxford Sur. Evol. Biol. 5, 96–135 (1988).

    Google Scholar 

  26. Bull, J. J. & Charnov, E. L. Enigmatic reptilian sex ratios. Evolution 43, 1561–1566 (1989).

    CAS  PubMed  Google Scholar 

  27. Frank, S. A. & Swingland, I. R. Sex ratio under conditional sex expression. J. Theor. Biol. 135, 415–418 (1998).

    Google Scholar 

  28. Charnov, E. L. & Bull, J. J. Non-Fisherian sex ratios with sex change and environmental sex determination. Nature 338, 148–150 (1989a).

    Google Scholar 

  29. Charnov, E. L. & Bull, J. J. The primary sex ratio under environmental sex determination. J. Theor. Biol. 139, 431–436 (1989b).

    CAS  PubMed  Google Scholar 

  30. Freedberg, S. & Wade, M. J. Male combat favours female-biased sex ratios under environmental sex determination. Anim. Behav. 67, 177–181 (2004).

    Google Scholar 

  31. Shaw, R. F. & Mohler, J. D. The selective significance of the sex ratio. Am. Nat. 87, 337–342.

  32. Wade, M. J., Shuster, S. M. & Demuth, J. P. Sexual selection favors female-biases sex ratios: the balance between the opposing forces of sex-ratio selection and sexual selection. Am. Nat. 162, 403–414 (2003).

    PubMed  Google Scholar 

  33. Field, C. B., Randerson, J. L. & Malmström, C. M. Global net primary production: combining ecology with remote sensing. Rem. Sen. Environ. 51, 74–88 (1995).

    Google Scholar 

  34. Gross, K. L. & Soule, J. D. Differences in biomass allocation to reproductive and vegetative structures of male and female plants of a dioecious, perennial herb, Silene alba (Miller) Krause. Am. J. Bot. 68, 801–807 (1981).

    Google Scholar 

  35. Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or defend. Quart. Rev. Biol. 67, 283–335 (1992).

    Google Scholar 

  36. Wardlaw, I. F. Tansley Review No. 27. The control of carbon partitioning in plants. New Phytol. 116, 341–381 (1990).

    CAS  Google Scholar 

  37. Watson, M. A. & Casper, B. B. Morphogenetic constraints on patterns of carbon distribution in plants. Ann. Rev. Ecol. Sys. 15, 233–258 (1984).

    Google Scholar 

  38. McDowell, S. C. L., McDowell, N. G., Marshall, J. D. & Hultine, K. Carbon and nitrogen allocation in male and female reproduction in Rocky Mountain Douglas-fir (Pseudotsuga menziesii var. gluaca, Pinaceae). Am. J. Bot. 87, 539–546 (2000).

    CAS  PubMed  Google Scholar 

  39. Dawson, T. E. & Bliss, L. C. Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between the sexes. Oecologia 79, 332–343 (1989).

    CAS  PubMed  Google Scholar 

  40. Leigh, A. & Nicotra, A. B. Sexual dimorphism and reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Aus. J. Bot. 51, 509–514 (2003).

    Google Scholar 

  41. Grime, J. P. Plant strategies, vegetation processes and ecosystem properties (Wiley, 2006).

    Google Scholar 

  42. Hultine, K. R., Bush, S. E., West, A. G. & Ehleringer, J. R. Population structure, physiology and ecohydrological impacts of dioecious riparian tree species of western North America. Oecologia 154, 85–93 (2007).

    CAS  PubMed  Google Scholar 

  43. Tognetti, R. Adaptation to climate change of dioecious plants: does gender balance matter? Tree Physiol. 32, 1321–1324 (2012).

    PubMed  Google Scholar 

  44. Juvany, M. & Munné-Bosch, S. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. J. Exp. Bot. 66, 6083–6092 (2015).

    CAS  PubMed  Google Scholar 

  45. Hultine, K. R. et al. Gender specific patterns of above ground allocation, canopy conductance and water use in a dominant riparian tree species. Tree Physiol. 28, 1383–1394 (2008).

    CAS  PubMed  Google Scholar 

  46. Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    CAS  PubMed  Google Scholar 

  47. Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Let. 8, 1010–1020 (2005).

    Google Scholar 

  48. Ward, J. K., Dawson, T. E. & Ehleringer, J. R. Response of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose. Tree Physiol. 22, 339–346 (2002).

    CAS  PubMed  Google Scholar 

  49. Dawson, T. E., Ward, J. K. & Ehleringer, J. R. Temporal scaling of physiological responses from gas exchange to tree rings: a gender-specific study of Acer negundo (Boxelder) growing under different conditions. Funct. Ecol. 18, 212–222 (2004).

    Google Scholar 

  50. Hultine, K. R., Bush, S. E., West, A. G. & Ehleringer, J. R. The effects of gender on sap-flux-scaled transpiration in a dominant riparian tree species: box elder (Acer negundo). J Geophys. Res. Biogeosc. 112, G03S06 (2007).

    Google Scholar 

  51. Wallace, C. S. & Rundel, P. W. Sexual dimorphism and resource allocation of male and female shrubs of Simondsia chinensis. Oecologia 44, 34–39 (1979).

    PubMed  Google Scholar 

  52. Delph, L. F. Sex-differential resource allocation patterns in the subdioecious shrub Hebe subalpine. Ecology 71, 1342–1351 (1990).

    Google Scholar 

  53. Delph, L. F., Lu, Y. & Jayne, L. D. Patterns of resource allocation in a dioecious Carex (Cyperaceae). Am. J. Bot. 80, 607–615 (1993).

    Google Scholar 

  54. Barrett, S. C. H. & Hough, J. Sexual dimorphism in flowering plants. J. Exp. Bot. 64, 67–82 (2013).

    CAS  PubMed  Google Scholar 

  55. Wimp, G. M. & Whitham, T. G. Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 82, 440–452 (2001).

    Google Scholar 

  56. Allen, C. D. A global review of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Google Scholar 

  57. Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl Acad. Sci. USA 107, 21289–21294 (2010).

    CAS  PubMed  Google Scholar 

  58. Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and mortality. Nature Clim. Change 3, 292–297 (2013).

    Google Scholar 

  59. McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nature Clim. Change 6, 295–300 (2016).

    Google Scholar 

  60. McDowell, N. G. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    PubMed  Google Scholar 

  61. McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    PubMed  Google Scholar 

  62. Xu, X. Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant Cell Environ. 31, 850–860 (2008).

    CAS  PubMed  Google Scholar 

  63. Brodribb, T. J. & Holbrook, N. M. Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ. 29, 2205–2215 (2006).

    CAS  PubMed  Google Scholar 

  64. Zwieniecki, M. A. & Holbrook, N. M. Confronting Maxwell's demon: biophysics of xylem repair. Trends Plant Sci. 14, 530–534 (2009).

    CAS  PubMed  Google Scholar 

  65. Vilagrosa, A. et al. Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environ. Exp. Bot. 69, 233–242 (2010).

    Google Scholar 

  66. Bucci, S. J., Scholz, F. G., Goldstein, G., Meinzer, F. C. & Sternberg, L. DA S. L. Dynamic changes in hydraulic conductivity in petioles of two savanna tree species factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ. 26, 1633–1645 (2003).

    Google Scholar 

  67. Salleo, S., Trifilo, P., Esposito, S., Nardini, A. & LoGullo, M. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair. Funct. Plant Biol. 36, 815–825 (2009).

    Google Scholar 

  68. Jacobsen, A. L., Esler, K. J., Pratt, R. B. & Ewers, F. W. Water stress tolerance of shrubs in Mediterranean-type climate regions: convergence of Fynbos and succulent Karoo communities with California shrub communities. Am. J. Bot. 96, 1445–1453 (2009).

    PubMed  Google Scholar 

  69. Martinez-Vilalta, J., Piñol, J. & Beven, K. Hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol. Mod. 155, 127–147 (2002).

    Google Scholar 

  70. Plaut, J. A. et al. Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought. Plant Cell Environ. 35, 1601–1617 (2012).

    PubMed  Google Scholar 

  71. Plaut, J. A. et al. Reduced transpiration response to precipitation pulses precedes mortality in a piñon-juniper woodland subject to prolonged drought. New Phytol. 200, 375–387 (2013).

    PubMed  Google Scholar 

  72. Anderegg, W. R. L., Anderegg, L. D. L., Berry, J. A. & Field, C. B. Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia 175, 11–23 (2014).

    PubMed  Google Scholar 

  73. Sevanto, S., McDowell, N. G., Dickman, T. L., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypothesis. Plant Cell Environ. 37, 153–161 (2014).

    CAS  PubMed  Google Scholar 

  74. Fisher, R. A. The Genetic Theory of Natural Selection (Oxford Univ. Press, 1930).

    Google Scholar 

  75. Loarie, S. R. The velocity of climate change. Nature 462, 1052–1055 (2011).

    Google Scholar 

  76. Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS  PubMed  Google Scholar 

  77. Corlett, T. & Westcott, D. A. Will plant movements keep up with climate change. Trends Ecol. Evol. 28, 482–488 (2013).

    PubMed  Google Scholar 

  78. Jones, M. H., MacDonald, S. E. & Henry, G. H. R. Sex- and habitat-specific responses of a high arctic willow to experimental climate change. Oikos 87, 129–138 (1999).

    Google Scholar 

  79. Wang, X. & Griffin, K. L. Sex-specific physiological and growth response to elevated atmospheric CO2 in Silene latifolia Poiret. Global Change Biol. 9, 612–618 (2003).

    Google Scholar 

  80. Zhao, H., Xu, X., Zhang, Y., Korpelainen, H. & Li, C. Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species. Oecologia 165, 41–54 (2011).

    PubMed  Google Scholar 

  81. Wang, X. Reproduction and progeny of Silene latifolia (Caryophyllaceae) as affected by atmospheric CO2 concentration. Amer. J. Bot. 92, 826–832 (2005).

    Google Scholar 

  82. Montesinos, D., De Luís, M., Verdú, M., Raventós, J. & García-Fayos, P. When, how and how much: gender-specific resource-use strategies in the dioecious tree Juniperus thurifera. Ann. Bot. 98, 885–889 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Montesinos, D., Villar-Salvador, P., García-Fayos, P. & Verdú, M. Genders in Juniperus thurifera have different functional responses to variations in nutrient availability. New Phytol. 193, 705–712 (2011).

    PubMed  Google Scholar 

  84. Rood, S. B. et al. Hydrological linkages between a climate oscillation, river flows, growth, and wood Δ13C of male and female cottonwood trees. Plant Cell Environ. 36, 984–993 (2013).

    CAS  PubMed  Google Scholar 

  85. Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Fron. Ecol. Environ. 14, 84–93 (2016).

    Google Scholar 

  86. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Let. 7, 1225–1241 (2004).

    Google Scholar 

  87. Grady, K. C. et al. Genetic variation in productivity of foundation riparian species at the edge of their distribution: implications for restoration and assisted migration in a warming climate. Global Change Biol. 17, 3724–3735 (2011).

    Google Scholar 

  88. Grady, K. C., Kolb, T. E., Ikeda, D. H. & Whitham, T. G. A bridge too far: cold and pathogen constraints to genetics based assisted migration of riparian forests. Res. Ecol. 23, 811–820 (2015).

    Google Scholar 

  89. Hultine, K. R., Burtch, K. G. & Ehleringer, J. R. Gender Specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate. Global Change Biol. 19, 3390–3405 (2013).

    Google Scholar 

  90. Eppley, S. M., Mercer, C. A., Haaning, C. & Graves, C. B. Sex-specific variation in the interaction between Distichlis spicata (Poaceae) and mycorrhizal fungi. Am. J. Bot. 96, 1967–1973 (2009).

    PubMed  Google Scholar 

  91. Varga, S. & Kytöviita, M. M. Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in Geranium sylvaticum. Func. Ecol. 24, 750–758 (2010).

    Google Scholar 

  92. Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Func. Ecol. 16, 545–556 (2002).

    Google Scholar 

  93. Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manag. 220, 166–184 (2005).

    Google Scholar 

  94. Verdú, M. & García-Fayos, P. Frugivorous birds mediate sex-biased facilitation in a dioecious nurse plant. J. Veg. Sci. 14, 35–42 (2003).

    Google Scholar 

  95. Graff, P., Rositano, F. & Aguiar, M. R. Changes in sex ratios of a dioecious grass with grazing intensity: the interplay between gender traits, neighbor interactions and spatial patterns. J. Ecol. 101, 1146–1157 (2013).

    Google Scholar 

  96. Ågren, J. Danell, K. & Elmqvist, T. in Gender and Dimorphism of Flowering Plants (eds Geber, M. A., Dawson, T. E., Delph, L. F. ) 217–246 (Springer, 1999).

    Google Scholar 

  97. Cornelissen, T. & Stiling, P. Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions. Oikos 111, 488–500 (2005).

    Google Scholar 

  98. Ashman, T. L. Pollinator selectivity and its implications for the evolution of dioecy and sexual dimorphism. Ecology. 81, 2577–2591 (2000).

    Google Scholar 

  99. Wolfe, L. M. Differential flower herbivory and gall formation on males and females of Neea psychotroides, a dioecious tree. Biotropica 29, 169–174 (1997).

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Foundation's MacroSystems Biology Program (award nos 1340852 to K.C.G. and T.G.W., 1340856 to K.R.H.) and an MRI Award (DBI-1126840 to T.G.W.) to establish the Southwest Experimental Garden Array (SEGA).

Author information

Authors and Affiliations

Authors

Contributions

K.R.H. originally formulated the idea for the manuscript, conducted the literature review on dioecy patterns of gas exchange and growth, and wrote the text for the main body of the manuscript and Box 1. K.C.G. wrote the text for Box 2 and conducted the literature review that supported the figures in Box 2. All of the authors provided comprehensive editorial input throughout the manuscript.

Corresponding author

Correspondence to Kevin R. Hultine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplemental Table 1

Source of data presented in Figure 1a showing differences in stomatal conductance (g) between male and female plants of dioecious species. The column labeled “M:F Control” is the ratio of stomatal conductance under control (i.e. high soil water and normal temperature) conditions, and “M:F Treatment” is the ratio of g when either a drought or temperature warming experiment was applied. (XLSX 14 kb)

Supplemental Table 2

Source of data presented in Figure 1b showing differences in net photosynthesis (A) between male and female plants of dioecious species. The column labeled “M:F Control” is the ratio of photosynthesis rates under control (i.e. high soil water and normal temperature) conditions, and “M:F Treatment” is the ratio of A when either a drought or temperature warming experiment was applied. (XLSX 15 kb)

Supplemental Table 3

Source of data presented in Figure 1c showing differences in growth rates between male and female plants of dioecious species. The column labeled “M:F Control” is the ratio of growth rates under control (i.e. high soil water and normal temperature) conditions, and “M:F Treatment” is the ratio of growth when either a drought or temperature warming experiment was applied. (XLSX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hultine, K., Grady, K., Wood, T. et al. Climate change perils for dioecious plant species. Nature Plants 2, 16109 (2016). https://doi.org/10.1038/nplants.2016.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.109

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing