Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion


High-molecular-mass natural rubber is a valuable plant-derived poly(cis-1,4-isoprene) with many industrial and medical applications. It is synthesized by a rubber cis-prenyltransferase (CPT) complex on the surface of rubber particles in specialized latex-producing cells known as laticifers. Here we show that Taraxacum brevicorniculatum rubber transferase activator (TbRTA), a dandelion homologue of the human Nogo-B receptor, is an essential component of the rubber transferase complex which interacts with rubber CPTs on the surface of rubber particles. The knockdown of TbRTA by RNA interference eliminated rubber biosynthesis, without affecting dolichol accumulation or protein glycosylation in the latex. We also found that TbRTA is localized on the endoplasmic reticulum membrane, supporting the current favoured model of rubber particle biogenesis. We therefore propose that TbRTA acts as a rubber CPT-binding protein that is necessary for the formation of an active rubber transferase complex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of TbRTA.
Figure 2: TbRTA localizes to the endoplasmic reticulum.
Figure 3: TbRTA interacts with TbCPT1–3.
Figure 4: Influence of TbRTA knockdown on rubber biosynthesis.
Figure 5: Influence of TbRTA knockdown on TbCPT/SRPP-expression, glycosylation status and dolichol content.
Figure 6: Proposed model of rubber transferase complexes on rubber particles.


  1. 1

    Cornish, K. Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species. Nature Prod. Rep. 18, 182–189 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Davis, W. The rubber industry's biological nightmare. Fortune 136, 86 (1997).

    Google Scholar 

  3. 3

    Mooibroek, H. & Cornish, K. Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 53, 355–365 (2000).

    CAS  Article  Google Scholar 

  4. 4

    van Beilen, J. B. & Poirier, Y. Guayule and Russian dandelion as alternative sources of natural rubber. Crit. Rev. Biotechnol. 27, 217–231 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Archer, B., Audley, B., Cockbain, E. & McSweeney, G. The biosynthesis of rubber. Incorporation of mevalonate and isopentenyl pyrophosphate into rubber by Hevea brasiliensis-latex fractions. Biochem. J. 89, 565 (1963).

    CAS  Article  Google Scholar 

  6. 6

    Ogura, K. & Koyama, T. Enzymatic aspects of isoprenoid chain elongation. Chem. Rev. 98, 1263–1276 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Post, J. et al. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiol. 158, 1406–1417 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Schmidt, T. et al. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem 11, 11 (2010).

    Article  Google Scholar 

  9. 9

    Asawatreratanakul, K. et al. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. Eur. J. Biochem. 270, 4671–4680 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Collins-Silva, J. et al. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism. Phytochemistry 79, 46–56 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Hillebrand, A. et al. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum. PloS ONE 7, e41874 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Kharel, Y. & Koyama, T. Molecular analysis of cis-prenyl chain elongating enzymes. Nature Prod. Rep. 20, 111–118 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Kharel, Y., Takahashi, S., Yamashita, S. & Koyama, T. Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS J. 273, 647–657 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Skorupinska-Tudek, K., Wojcik, J. & Swiezewska, E. Polyisoprenoid alcohols—recent results of structural studies. Chem. Record 8, 33–45 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Takahashi, S. & Koyama, T. Structure and function of cis-prenyl chain elongating enzymes. Chem. Record 6, 194–205 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Cunillera, N., Arró, M., Forés, O., Manzano, D. & Ferrer, A. Characterization of dehydrodolichyl diphosphate synthase of Arabidopsis thaliana, a key enzyme in dolichol biosynthesis. FEBS Lett. 477, 170–174 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Endo, S., Zhang, Y.-W., Takahashi, S. & Koyama, T. Identification of human dehydrodolichyl diphosphate synthase gene. Biochim. Biophys. Acta 1625, 291–295 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Sato, M., Fujisaki, S., Sato, K., Nishimura, Y. & Nakano, A. Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Genes Cells 6, 495–506 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Sato, M. et al. The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol. Cell. Biol. 19, 471–483 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Schenk, B., Fernandez, F. & Waechter, C. J. The ins(ide) and outs(ide) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology 11, 61R–70R (2001).

    CAS  Article  Google Scholar 

  21. 21

    Akhtar, T. A. et al. The tomato cis-prenyltransferase gene family. Plant J. 73, 640–652 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Kera, K., Takahashi, S., Sutoh, T., Koyama, T. & Nakayama, T. Identification and characterization of a cis, trans-mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana. FEBS J. 279, 3813–3827 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Surmacz, L., Plochocka, D., Kania, M., Danikiewicz, W. & Swiezewska, E. cis-Prenyltransferase AtCPT6 produces a family of very short-chain polyisoprenoids in planta. Biochim. Biophys. 1841, 240–250 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Harrison, K. D. et al. Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J. 30, 2490–2500 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Fujihashi, M. et al. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Natl Acad. Sci. USA 98, 4337–4342 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Harrison, K. D. et al. Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab. 10, 208–218 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Miao, R. Q. et al. Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc. Natl Acad. Sci. USA 103, 10997–11002 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Cornish, K. Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57, 1123–1134 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Martin, S. & Parton, R. G. Lipid droplets: a unified view of a dynamic organelle. Nature Rev. Mol. Cell Biol. 7, 373–378 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Schmidt, T. et al. Molecular cloning and characterization of rubber biosynthetic genes from Taraxacum koksaghyz. Plant Mol. Biol. Report. 28, 277–284 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  32. 32

    Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785–786 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Hofmann, K. TMbase-A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).

    Google Scholar 

  34. 34

    Zhang, H. et al. Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell Online 20, 1879–1898 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Bassard, J. E., Mutterer, J., Duval, F. & Werck-Reichhart, D. A novel method for monitoring the localization of cytochromes P450 and other endoplasmic reticulum membrane associated proteins: a tool for investigating the formation of metabolons. FEBS J. 279, 1576–1583 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Park, E. J. et al. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 20, 448–457 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Grabińska, K. A. et al. Molecular characterization of the cis-prenyltransferase of Giardia lamblia. Glycobiology 20, 824–832 (2010).

    Article  Google Scholar 

  38. 38

    Xing, S. et al. ATP citrate lyase activity is post-translationally regulated by sink strength and impacts the wax, cutin and rubber biosynthetic pathways. Plant J. (2014).

  39. 39

    Wahler, D. et al. Proteomic analysis of latex from the rubber-producing plant Taraxacum brevicorniculatum. Proteomics 12, 901–905 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Cornish, K., Wood, D. F. & Windle, J. J. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta 210, 85–96 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Tzen, J. & Huang, A. Surface structure and properties of plant seed oil bodies. J. Cell Biol. 117, 327–335 (1992).

    CAS  Article  Google Scholar 

  42. 42

    Chapman, K. D., Dyer, J. M. & Mullen, R. T. Biogenesis and functions of lipid droplets in plants. Thematic Review Series: lipid droplet synthesis and metabolism: from yeast to man. J. Lipid Res. 53, 215–226 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Qu, Y. et al. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. J. Biol. Chem. 290, 1898–1914 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Müller, B. et al. Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices. Appl. Microbiol. Biotechnol. 88, 689–698 (2010).

    Article  Google Scholar 

  45. 45

    Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA 76, 4350–4354 (1979).

    CAS  Article  Google Scholar 

  46. 46

    Schiestl, R. H. & Gietz, R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346 (1989).

    CAS  Article  Google Scholar 

Download references


We gratefully acknowledge the technical assistance of Daniela Ahlert, Ursula Malkus (Westphalian Wilhelms-University of Münster) and Christine Schwarz (Technische Universität München). We also thank William C. Sessa and Kariona Grabinska for providing the yeast strains. This work was supported by the German Federal Environmental Foundation (DBU, 13255) and the Federal Ministry of Food and Agriculture (22002212).

Author information




J.E., N.vD., J.F. and C.S.G. conceived and designed the experiments. J.E., J.F., N.vD., E.N., A.S. and C.S.G performed the experiments. C.S.G., R.T. and D.P. analysed the data. W.E. and C.H. contributed reagents/materials/analysis tools. J.E., N.vD., C.S.G. and R.T. wrote the paper.

Corresponding author

Correspondence to Christian Schulze Gronover.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Epping, J., van Deenen, N., Niephaus, E. et al. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nature Plants 1, 15048 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing