Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown


An Erratum to this article was published on 10 February 2015


Touch can lead to a reduction in plant growth and a delay in flowering time. Touch-induced changes in plant morphology, termed thigmomorphogenesis, have been shown to depend on the phytohormone jasmonate1. However, touch-induced phenotypes are also reminiscent of plants deficient in the phytohormone gibberellin2. Here we assess the effect of touch on wild-type Arabidopsis plants and mutants deficient in gibberellin signalling. We show that touch leads to stunted growth and delayed flowering in wild-type plants, as expected. These touch-induced changes in morphology are accompanied by a reduction in gibberellin levels, and can be reversed through the application of a bioactive form of gibberellin. We further show that touch induces the expression of AtGA2ox7, which encodes an enzyme involved in gibberellin catabolism. Arabidopsis ga2ox7 loss-of-function mutants do not respond to touch, suggesting that this gene is a key regulator of thigmomorphogenesis. We conclude that touch-induced changes in Arabidopsis morphology depend on gibberellin catabolism. Given that AtGA2ox7 helps to confer resistance to salt stress, and that touch can increase plant resistance to pathogens, we suggest that gibberellin catabolism could be targeted to improve plant resistance to abiotic and biotic stress.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Exogenous application of bioactive GA4 restores the thigmo-phenotypes in Arabidopsis.
Figure 2: Touching alters endogenous GA levels and expression of GA signalling genes.
Figure 3: AtGA2ox7 loss-of-function mutant is non-responsive to touch.


  1. Chehab, E. W., Yao, C., Henderson, Z., Kim, S. & Braam, J. Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr. Biol. 22, 701–706 (2012).

    CAS  Article  PubMed  Google Scholar 

  2. Suge, H. Growth and gibberellin production in Phaseolus vulgaris as affected by mechanical stress. Plant Cell Physiol. 19, 1557–1560 (1978).

    CAS  Google Scholar 

  3. Monshausen, G. B. & Gilroy, S. Feeling green: mechanosensing in plants. Trends Cell Biol. 19, 228–235 (2009).

    Article  PubMed  Google Scholar 

  4. Monshausen, G. B. & Haswell, E. S. A force of nature: Molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64, 4663–4680 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Hamant, O. Widespread mechanosensing controls the structure behind the architecture in plants. Curr. Opin. Plant Biol. 16, 654–660 (2013).

    CAS  Article  PubMed  Google Scholar 

  6. Braam, J. In touch: plant responses to mechanical stimuli. New Phytol. 165, 373–389 (2005).

    Article  PubMed  Google Scholar 

  7. Lee, D., Polisensky, D. H. & Braam, J. Genome wide identification of touch and darkness-regulated Arabidopsis genes: a focus on calmodulin like and XTH genes. New Phytol. 165, 429–444 (2005).

    CAS  Article  PubMed  Google Scholar 

  8. Jaffe, M. J. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation with special reference to Bryonia dioica. Planta 114, 143–157 (1973).

    CAS  Article  PubMed  Google Scholar 

  9. Radi, A., Lange, T., Niki, T., Koshioka, M. & Pimenta Lange, M. J. Ectopic expression of pumpkin gibberellin oxidases alters gibberellin biosynthesis and development of transgenic Arabidopsis plants. Plant Physiol. 140, 528–536 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Sun, T. P. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book 6, e0103, (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 331, 91–94 (2006).

    Article  Google Scholar 

  12. Colebrook, E. H., Thomas, S. G., Phillips, A. & Hedden, P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Bot. 217, 67–75 (2014).

    CAS  Article  Google Scholar 

  13. Daviere, J. M. & Achard, P. Gibberellin signaling in plants. Development 140, 1147–1151 (2013).

    CAS  Article  PubMed  Google Scholar 

  14. Kohli, A., Sreenivasulu, N., Lakshmanan, P. & Kumar, P. P. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 32, 945–957 (2013).

    CAS  Article  PubMed  Google Scholar 

  15. Benikhlef, L. et al. Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biol. 13, 133 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wild, M. et al. The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24, 3307–3319 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Koini, M. A. et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408–413 (2009).

    CAS  Article  PubMed  Google Scholar 

  18. Schomburg, F. M., Bizzell, C. M., Lee, D. J., Zeevaart, J. A. D. & Amasino, R. M. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15, 151–163 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y. & Oda, K. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56, 613–626 (2008).

    CAS  Article  PubMed  Google Scholar 

  20. Park, J. H. et al. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1–12 (2002).

    Article  PubMed  Google Scholar 

  21. Yang, D. L. et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl Acad. Sci. USA 109, E1192–E1200 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Heinrich, M. et al. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J. 73, 591–606 (2013).

    CAS  Article  PubMed  Google Scholar 

  23. Fernández-Calvo, P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701–715 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rieu, I. et al. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20, 2420–2436 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Tyler, L. et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 135, 1008–1019 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Boyes, D. C. et al. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Lange, T. et al. Gibberellin biosynthesis in developing pumpkin seedlings. Plant Physiol. 139, 213–223 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Pimenta Lange, M. J., Knop, N. & Lange, T. Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L. J. Exp. Bot. 63, 2681–2691 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W. R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao, S. & Russell, D. F. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1045–1062 (2005).

    Google Scholar 

Download references


We thank Anja Liebrandt for technical assistance, Sarah Krüger and Arne Schmidt for help growing the plants, and Drs Patrick Achard and Roberto Solano for kindly providing seeds of the global della and the myc2,3,4 mutants, respectively.

Author information

Authors and Affiliations



M.J.P.L. and T.L designed and performed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Maria João Pimenta Lange or Theo Lange.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lange, M., Lange, T. Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown. Nature Plants 1, 14025 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing