Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dislocations and vortices in pair-density-wave superconductors

Abstract

With the groundbreaking work of Fulde, Ferrell, Larkin and Ovchinnikov, it was realized that superconducting order can also break translational invariance, leading to a phase in which the Cooper pairs develop a coherent periodic spatially oscillating structure. Such pair-density-wave (PDW) superconductivity has become relevant in a diverse range of systems, including cuprates, organic superconductors, heavy-fermion superconductors, cold atoms and high-density quark matter. Here we show that, in addition to charge-density-wave (CDW) order, there are PDW ground states that induce spin-density-wave (SDW) order when there is no applied magnetic field. Furthermore, we show that PDW phases support topological defects that combine dislocations in the induced CDW/SDW order with a fractional vortex in the usual superconducting order. These defects provide a mechanism for fluctuation-driven non-superconducting CDW/SDW phases and conventional vortices with CDW/SDW order in the core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fractional vortex dislocation.

Similar content being viewed by others

References

  1. Larkin, A. I. & Ovchinnikov, Y. N. Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1965).

    MathSciNet  Google Scholar 

  2. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964).

    Article  ADS  Google Scholar 

  3. Radovan, H. A. et al. Magnetic enhancement of superconductivity from electron spin domains. Nature 425, 51–55 (2003).

    Article  ADS  Google Scholar 

  4. Bianchi, A. et al. Possible Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in CeCoIn5 . Phys. Rev. Lett. 91, 187004 (2003).

    Article  ADS  Google Scholar 

  5. Lortz, R. et al. Calorimetric evidence for a Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in the layered organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 . Phys. Rev. Lett. 99, 187002 (2007).

    Article  ADS  Google Scholar 

  6. Matsuda, Y. & Shimahara, H. Fulde–Ferrell–Larkin–Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn. 76, 051005 (2007).

    Article  ADS  Google Scholar 

  7. Mizushima, T., Machida, K. & Ichioka, M. Direct imaging of spatially modulated superfluid phases in atomic fermion systems. Phys. Rev. Lett. 94, 060404 (2005).

    Article  ADS  Google Scholar 

  8. Yang, K. Realization and detection of Fulde–Ferrell–Larkin–Ovchinnikov superfluid phases in trapped atomic fermion systems. Phys. Rev. Lett. 95, 218903 (2005).

    Article  ADS  Google Scholar 

  9. Casalbuoni, R. & Nardulli, R. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 76, 263–320 (2004).

    Article  ADS  Google Scholar 

  10. Himeda, A., Kato, T. & Ogata, M. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t-t’-J model. Phys. Rev. Lett. 88, 117001 (2002).

    Article  ADS  Google Scholar 

  11. Raczkowski, M. et al. Unidirectional d-wave superconducting domains in the two-dimensional t–J model. Phys. Rev. B 76, R140505 (2007).

    Article  ADS  Google Scholar 

  12. Aligia, A. A. et al. Incommensurability and unconventional superconductor to insulator transition in the Hubbard model with bond-charge interaction. Phys. Rev. Lett. 99, 206401 (2007).

    Article  ADS  Google Scholar 

  13. Berg, E. et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007).

    Article  ADS  Google Scholar 

  14. Chen, H. D., Vafek, O., Yazdani, A. & Zhang, S. C. Pair density wave in the pseudogap state of high temperature superconductors. Phys. Rev. Lett. 93, 187002 (2004).

    Article  ADS  Google Scholar 

  15. Agterberg, D. F., Mukherjee, S. & Zheng, Z. Spatial line nodes and fractional vortex pairs in the Fulde–Ferrell–Larkin–Ovchinnikov vortex state of spin-singlet superconductors. Phys. Rev. Lett. 100, 017001 (2008).

    Article  ADS  Google Scholar 

  16. Leggett, A. J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

    Article  ADS  Google Scholar 

  17. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004).

    Article  ADS  Google Scholar 

  18. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  19. Yee, Y. S. et al. Neutron-scattering study of spin-density wave order in the superconducting state of excess-oxygen-doped La2CuO4+y . Phys. Rev. B 60, 3643–3654 (1999).

    Article  ADS  Google Scholar 

  20. Zhitomirsky, M. E. Dissociation of flux line in unconventional superconductor. J. Phys. Soc. Jpn. 64, 913–921 (1995).

    Article  ADS  Google Scholar 

  21. Babaev, E. Vortices with fractional flux in two-gap superconductors and in extended Faddeev model. Phys. Rev. Lett. 89, 067001 (2002).

    Article  ADS  Google Scholar 

  22. Chung, S. B., Bluhm, H. & Kim, E. A. Stability of half-quantum vortices in px+ipy superconductors. Phys. Rev. Lett. 99, 197002 (2007).

    Article  ADS  Google Scholar 

  23. Babaev, E. Phase diagram of planar U(1)×U(1) superconductor—condensation of vortices with fractional flux and a superfluid state. Nucl. Phys. B 686, 397–412 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  24. Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610–616 (1972).

    ADS  Google Scholar 

  25. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  26. Jose, J. V., Kadanoff, L. P., Kirkpatrick, S. & Nelson, D. R. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217–1241 (1977).

    Article  ADS  Google Scholar 

  27. Thuneberg, E. V. Identification of vortices in superfluid He3B. Phys. Rev. Lett. 56, 359–362 (1986).

    Article  ADS  Google Scholar 

  28. Salomaa, M. M. & Volovik, G. E. Vortices with spontaneously broken axisymmetry in He3B. Phys. Rev. Lett. 56, 363–366 (1986).

    Article  ADS  Google Scholar 

  29. Tokuyasu, T. A., Hess, D. W. & Sauls, J. A. Vortex states in an unconventional superconductor and the mixed phases of UPt3 . Phys. Rev. B 41, 8891–8903 (1990).

    Article  ADS  Google Scholar 

  30. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with K. Hattori, K. Ueda and K. Yang. D.F.A. and H.T. acknowledge hospitality from the Kavli Institute for Theoretical Physics while part of this work was done. This work was supported in part by the National Science Foundation under Grant No. PHY05-51164. H.T. was partly supported by Scientific Research on Priority Areas Grants-in-Aid (Nos 19052003 and 17071011) from the MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Agterberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agterberg, D., Tsunetsugu, H. Dislocations and vortices in pair-density-wave superconductors. Nature Phys 4, 639–642 (2008). https://doi.org/10.1038/nphys999

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing