Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond angular streaking

Abstract

Ultrashort measurement-time resolution is traditionally obtained in pump–probe experiments, for which two ultrashort light pulses are required; the time resolution is then determined by the pulse duration. But although pulses of subfemtosecond duration are available, so far the energy of these pulses is too low to fully implement the traditional pump–probe technique. Here, we demonstrate ‘attosecond angular streaking’, an alternative approach to achieving attosecond time resolution. The method uses the rotating electric-field vector of an intense circularly polarized pulse to deflect photo-ionized electrons in the radial spatial direction; the instant of ionization is then mapped to the final angle of the momentum vector in the polarization plane. We resolved subcycle dynamics in tunnelling ionization by the streaking field alone and demonstrate a temporal localization accuracy of 24 as r.m.s. and an estimated resolution of ≈200 as. The demonstrated accuracy should enable the study of one of the fundamental aspects of quantum physics: the process of tunnelling of an electron through an energetically forbidden region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CEP in circularly and elliptically polarized few-cycle pulses.
Figure 2: Overview of the measured helium-ion momentum distributions while scanning the CEP over 2π and comparison with a semiclassical simulation.
Figure 3: CEP dependence of the ionization angle in He using attosecond angular streaking.

Similar content being viewed by others

References

  1. Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).

    Article  Google Scholar 

  2. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  3. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  4. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  5. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2006).

    Article  ADS  Google Scholar 

  6. Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few cycle laser pulse. Opt. Lett. 25, 16–18 (2000).

    Article  ADS  Google Scholar 

  7. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  8. Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002).

    Article  ADS  Google Scholar 

  9. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  10. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903–173906 (2002).

    Article  ADS  Google Scholar 

  11. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  12. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    Article  ADS  Google Scholar 

  13. Bobroff, N. Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instrum. 57, 1152–1157 (1986).

    Article  ADS  Google Scholar 

  14. Yildiz, A. et al. Myosin V Walks Hand-Over-Hand: Single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  ADS  Google Scholar 

  15. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  ADS  Google Scholar 

  16. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  17. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).

    Article  ADS  Google Scholar 

  18. Martiny, Ch. P. J. & Madsen, L. B. Symmetry of carrier-envelope phase difference effects in strong-field, few-cycle ionization of atoms and molecules. Phys. Rev. Lett. 97, 093001 (2006).

    Article  ADS  Google Scholar 

  19. Gallmann, L. et al. Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1314–1316 (1999).

    Article  ADS  Google Scholar 

  20. Hauri, C. P. et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79, 673–677 (2004).

    Article  ADS  Google Scholar 

  21. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: Reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003).

    Article  ADS  Google Scholar 

  22. Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  23. Delone, N. B. & Krainov, V. P. Energy and angular electron spectra for the tunnel ionization of atoms by strong low-frequency radiation. J. Opt. Soc. Am. B 8, 1207–1211 (1991).

    Article  ADS  Google Scholar 

  24. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 2008–2013 (1986).

    Google Scholar 

  25. Büttiker, M. & Landauer, R. Traversal time for tunneling. Phys. Rev. Lett. 49, 1739–1742 (1982).

    Article  ADS  Google Scholar 

  26. Büttiker, M. Larmor precession and the traversal time for tunneling. Phys. Rev. B 27, 6178–6188 (1983).

    Article  ADS  Google Scholar 

  27. Paulus, G. G. et al. Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett. 91, 253004–253007 (2003).

    Article  ADS  Google Scholar 

  28. Miloševic, D., Paulus, G. G. & Becker, W. High-order above-threshold ionization with few-cycle pulse: A meter of the absolute phase. Opt. Express 11, 1418–1429 (2003).

    Article  ADS  Google Scholar 

  29. Constant, E., Taranukhin, V. D., Stolow, A. & Corkum, P. B. Methods for the measurement of the duration of high-harmonic pulses. Phys. Rev. A 56, 3870–3878 (1997).

    Article  ADS  Google Scholar 

  30. Zhao, Z. X., Chang, Z., Tong, X. M. & Lin, C. D. Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements. Opt. Express 13, 1966–1977 (2005).

    Article  ADS  Google Scholar 

  31. Guandalini, A. et al. 5.1 fs pulses generated by filamentation and carrier envelope phase stability analysis. J. Phys. B 39, S257–S264 (2006).

    Article  Google Scholar 

  32. Kornelis, W. et al. Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 28, 281–283 (2003).

    Article  ADS  Google Scholar 

  33. Jagutzki, O. et al. A broad-application microchannel-plate detector system for advanced particle or photon detection tasks: Large area imaging, precise multi-hit timing information and high detection rate. Nucl. Instrum. Methods A 477, 244–249 (2002).

    Article  ADS  Google Scholar 

  34. Staudte, A. Thesis, Univ. Frankfurt (2005), <http://www.atom.uni-frankfurt.de/web/publications/files/AndreStaudte2005.pdf>.

  35. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NCCR Quantum Photonics (NCCR QP), research instruments of the Swiss National Science Foundation (SNSF), the A.-v.-H. Stiftung, the Studienstiftung des deutschen Volkes and the Deutsche Forschungsgemeinschaft. We gratefully acknowledge stimulating discussions with P. B. Corkum and M. Büttiker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrissa Eckle.

Supplementary information

Supplementary Information

Supplementary Movie S1 (AVI 937 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckle, P., Smolarski, M., Schlup, P. et al. Attosecond angular streaking. Nature Phys 4, 565–570 (2008). https://doi.org/10.1038/nphys982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing