Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The physics and applications of random lasers

Abstract

Recent developments in the field of micro and nanophotonics have shown that it is possible to make use of the intrinsic disorder in photonic materials to create useful optical structures. An example is that of a random laser, in which laser action is obtained in disordered structures such as powders and porous glasses. Although these materials are easy to fabricate, it is only recently that researchers have started to fully understand the rich and complex physical processes that take place in amplifying disordered systems. Here, I will give an overview of the various recent results and discuss the physical picture that has now emerged. I will also discuss possible applications of this new type of disorder-based laser light source.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Multiple light scattering with gain.
Figure 2: Observation of random lasing.
Figure 3: Extended versus localized optical modes.
Figure 4: Complex emission spectra exhibiting narrow spikes.
Figure 5: Numerical calculation of mode profile.
Figure 6: Chaotic behaviour and Levy statistics.
Figure 7: Threshold fluctuations.
Figure 8: Random-laser materials.

References

  1. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–838 (1988).

    ADS  Article  Google Scholar 

  2. Koenderink, F., Lagendijk, A. & Vos, W. L. Optical extinction due to intrinsic structural variations of photonic crystals. Phys. Rev. B 72, 153102 (2005).

    ADS  Article  Google Scholar 

  3. Letokhov, V.S. Generation of light by a scattering medium with negative resonance absorption. Zh. Eksp. Teor. Fiz. 53, 1442–1447 (1967); Sov. Phys. JETP 26, 835–840 (1968).

  4. Wiersma, D. S. & Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 54, 4256–4265 (1996).

    ADS  Article  Google Scholar 

  5. Markushev, V. M., Zolin, V. F. & Briskina, Ch. M. Powder laser. Zh. Prikl. Spektrosk. 45, 847–850 (1986).

    Google Scholar 

  6. Gouedard, C., Husson, D., Sauteret, C., Auzel, F. & Migus, A. Generation of spatially incoherent short pulses in laser-pumped neodymiun stoichiometric crystals and powders. J. Opt. Soc. Am. B 10, 2358–2362 (1993).

    ADS  Article  Google Scholar 

  7. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    ADS  Article  Google Scholar 

  8. Sha, W. L., Liu, C. H. & Alfano, R. R. Spectral and temporal measurements of laser action of Rhodamine-640 dye in strongly scattering media. Opt. Lett. 19, 1922–1924 (1994).

    ADS  Article  Google Scholar 

  9. Wiersma, D. S., van Albada, M. P. & Lagendijk, A. Random laser? Nature 373, 203–204 (1995).

    ADS  Article  Google Scholar 

  10. Lawandy, N. M. & Balachandran, R. M. Random laser?—Reply. Nature 373, 204 (1995).

    ADS  Article  Google Scholar 

  11. Martorell, J., Balachandran, R. M. & Lawandy, N. M. Radiative coupling between photonic paint layers. Opt. Lett. 21, 239–241 (1996).

    ADS  Article  Google Scholar 

  12. Petermann, K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum. Electron. 15, 566–570 (1979).

    ADS  MathSciNet  Article  Google Scholar 

  13. Beenakker, C. W. J. Thermal radiation and amplified spontaneous emission from a random medium. Phys. Rev. Lett. 81, 1829–1832 (1998).

    ADS  Article  Google Scholar 

  14. Mishchenko, E. G. & Beenakker, C. W. J. Radiative transfer theory for vacuum fluctuations. Phys. Rev. Lett. 83, 5475–5478 (1999).

    ADS  Article  Google Scholar 

  15. Florescu, L. & John, S. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett. 93, 013602 (2004).

    ADS  Article  Google Scholar 

  16. Cao, H., Ling, Y., Xu, J. Y., Cao, C. Q. & Kumar, P. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett. 86, 4524–4527 (2001).

    ADS  Article  Google Scholar 

  17. Siegman, A. E. Lasers (Univ. Science Books, Mill Valley, 1986).

    Google Scholar 

  18. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

    ADS  Article  Google Scholar 

  19. Anderson, P. W. The question of classical localization: A theory of white paint? Phil. Mag. B 52, 505–508 (1985).

    ADS  Article  Google Scholar 

  20. Lagendijk, A., van Albada, M. P. & van der Mark, M. B. Localization of light: The quest for the white hole. Physica A 140, 183–190 (1986).

    ADS  Article  Google Scholar 

  21. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    ADS  Article  Google Scholar 

  22. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    ADS  Article  Google Scholar 

  23. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    ADS  Article  Google Scholar 

  24. Jiang, X. Y. & Soukoulis, C. M. Time dependent theory for random lasers. Phys. Rev. Lett. 85, 70–73 (2000).

    ADS  Article  Google Scholar 

  25. Cao, H. et al. Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84, 5584–5587 (2000).

    ADS  Article  Google Scholar 

  26. Vanneste, C. & Sebbah, P. Selective excitation of localized modes in active random media. Phys. Rev. Lett. 87, 183903 (2001).

    ADS  Article  Google Scholar 

  27. Pradhan, P. & Kumar, N. Localization of light in coherently amplifying random media. Phys. Rev. B 50, 9644–9647 (1994).

    ADS  Article  Google Scholar 

  28. Polson, R. C., Chipouline, A. & Vardeny, Z. V. Random lasing in pi-conjugated films and infiltrated opals. Adv. Mater. 13, 760–764 (2001).

    Article  Google Scholar 

  29. Mujumdar, S., Ricci, M., Torre, R. & Wiersma, D. S. Amplified extended modes in random lasers. Phys. Rev. Lett. 93, 053903 (2004).

    ADS  Article  Google Scholar 

  30. Strangi, G. et al. Random lasing and weak localization of light in dye-doped nematic liquid crystals. Opt. Express 14, 7737–7744 (2006).

    ADS  Article  Google Scholar 

  31. Apalkov, V. M., Raikh, M. E. & Shapiro, B. Random resonators and prelocalized modes in disordered dielectric films. Phys. Rev. Lett. 89, 016802 (2002).

    ADS  Article  Google Scholar 

  32. Chabanov, A. A. & Genack, A. Z. Statistics of dynamics of localized waves. Phys. Rev. Lett. 87, 233903 (2001).

    ADS  Article  Google Scholar 

  33. Chabanov, A. A., Zhang, Z. Q. & Genack, A. Z. Breakdown of diffusion in dynamics of extended waves in mesoscopic media. Phys. Rev. Lett. 90, 203903 (2003).

    ADS  Article  Google Scholar 

  34. Skipetrov, S. E. & van Tiggelen, B. A. Dynamics of weakly localized waves. Phys. Rev. Lett. 92, 113901 (2004).

    ADS  Article  Google Scholar 

  35. Patra, M. Decay rate distributions of disordered slabs and application to random lasers. Phys. Rev. E 67, 016603 (2003).

    ADS  Article  Google Scholar 

  36. van der Molen, K. L., Tjerkstra, R. W., Mosk, A. P. & Lagendijk, A. Spatial extent of random laser modes. Phys. Rev. Lett. 98, 143901 (2007).

    ADS  Article  Google Scholar 

  37. Vanneste, C., Sebbah, P. & Cao, H. Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett. 98, 143902 (2007).

    ADS  Article  Google Scholar 

  38. Angelani, L., Conti, C., Ruocco, G. & Zamponi, F. Glassy behavior of light. Phys. Rev. Lett. 96, 065702 (2006).

    ADS  Article  Google Scholar 

  39. Mujumdar, S., Tuerck, V., Torre, R. & Wiersma, D. S. Chaotic behavior of a random laser with static disorder. Phys. Rev. A 76, 033807 (2007).

    ADS  Article  Google Scholar 

  40. Cao, H., Jiang, X., Ling, Y., Xu, J. Y. & Soukoulis, C. M. Mode repulsion and mode coupling in random lasers. Phys. Rev. B 67, 161101 (2003).

    ADS  Article  Google Scholar 

  41. Anglos, D. et al. Random laser action in organic–inorganic nanocomposites. J. Opt. Soc. Am. B 21, 208–213 (2004).

    ADS  Article  Google Scholar 

  42. van der Molen, K., Mosk, A. P. & Lagendijk, A. Intrinsic intensity fluctuations in random lasers. Phys. Rev. A 74, 053808 (2006).

    ADS  Article  Google Scholar 

  43. Viswanathan, G. M. et al. Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996).

    ADS  Article  Google Scholar 

  44. Sharma, D., Ramachandran, H. & Kumar, N. Lévy statistics of emission from a novel random amplifying medium: An optical realisation of the Arrhenius cascade. Opt. Lett. 31, 1806–1808 (2006).

    ADS  Article  Google Scholar 

  45. Lepri, S., Cavalieri, S., Oppo, G. L. & Wiersma, D. S. Statistical regimes of random laser fluctuations. Phys. Rev. A 75, 063820 (2007).

    ADS  Article  Google Scholar 

  46. van Soest, G. Experiments on Random Lasers. PhD thesis, Univ. Amsterdam (2001).

  47. Schuurmans, F. J. P., Vanmaekelbergh, D., van de Lagemaat, J. & Lagendijk, A. Strongly photonic macroporous GaP networks. Science 284, 141–143 (1999).

    ADS  Article  Google Scholar 

  48. Garcìa, P. D., Sapienza, R., Blanco, A. & López, C. Photonic glass: A novel random material for light. Adv. Mater. 19, 2597–2602 (2007).

    Article  Google Scholar 

  49. Noginov, M. A. Solid-State Random Lasers (Springer Series in Optical Sciences, Vol. 105, Springer, Berlin, 2005).

    Google Scholar 

  50. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    ADS  Article  Google Scholar 

  51. Scheffold, F., Lenke, R., Tweer, R. & Maret, G. Localization or classical diffusion of light? Nature 398, 206–207 (1999).

    ADS  Article  Google Scholar 

  52. Wiersma, D. S., Gomez-Rivas, J., Bartolini, P., Lagendijk, A. & Righini, R. Reply: Localization or classical diffusion of light? Nature 398, 207 (1999).

    ADS  Article  Google Scholar 

  53. Wiersma, D. S., van Albada, M. P., van Tiggelen, B. A. & Lagendijk, A. Experimental evidence for recurrent multiple scattering events of light in disordered media. Phys. Rev. Lett. 74, 4193–4196 (1995).

    ADS  Article  Google Scholar 

  54. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical approach to photon localization. Nature 404, 850–852 (2000).

    ADS  Article  Google Scholar 

  55. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).

    ADS  Article  Google Scholar 

  56. Gottardo, S., Cavalieri, S., Yaroschuck, O. & Wiersma, D. S. Quasi 2D random laser action. Phys. Rev. Lett. 93, 263901 (2004).

    ADS  Article  Google Scholar 

  57. Laine, R. M., Rand, S. C., Hinklin, T. & Williams, G. R. Ultrafine powders and their use as lasing media. US Patent 6,656,588 (2003).

  58. Dubois, J. & la Rochelle, S. Active cooperative tuned identification friend or foe (ACTIFF). US Patent 5,966,227 (1999).

  59. Wiersma, D. S. & Cavalieri, S. A temperature-tunable random laser. Nature 414, 708–709 (2001).

    ADS  Article  Google Scholar 

  60. Milner, V. & Genack, A. Z. Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization. Phys. Rev. Lett. 94, 073901 (2005).

    ADS  Article  Google Scholar 

  61. Polson, R. C. & Varden, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 85, 1289–1291 (2004).

    ADS  Article  Google Scholar 

  62. Choe, R. et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI. Med. Phys. 32, 1128–1139 (2005).

    Article  Google Scholar 

  63. Williams, G. R., Bayram, S. B., Rand, S. C., Hinklin, T. & Laine, R. M. Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Phys. Rev. A 65, 013807 (2001).

    ADS  Article  Google Scholar 

  64. Mahler, L. & Tredicucci, A. Electrically pumped random laser in the Tera Hertz regime (2008, in the press).

  65. Lang, R., Scully, M. O. & Lamb, W. E. Why is the laser line so narrow? A theory of single-quasimode laser operation. Phys. Rev. A 7, 1788–1797 (1973).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

I wish to thank the entire optics of complex systems group at LENS for discussions as well as S. Mujumdar, S. Lepri, S. Cavalieri, R. Righini, M. Colocci, T. Arecchi, F. Marin, A. Lagendijk, K. van der Molen, A. Mosk, D. Anglos, A. Genack, P. Sebbah, M. Noginov and H. Cao. In addition, I thank the authors of the various papers discussed in this review for providing high-quality reprints of their figures and F. Riboli and P. Barthelemy for the finite-difference time-domain calculations on the extended and localized field distributions. This work was partially financed by the European Network of Excellence Phoremost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik S. Wiersma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiersma, D. The physics and applications of random lasers. Nature Phys 4, 359–367 (2008). https://doi.org/10.1038/nphys971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys971

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing