Article | Published:

Discovery of an excited pair state in superfluid 3He

Nature Physics volume 4, pages 571575 (2008) | Download Citation

Subjects

Abstract

Collective modes are the fingerprint of a condensed phase. The spectroscopy of these modes in superfluid 3He and unconventional superconductors can provide key information on the symmetry of the condensate as well as the microscopic pairing mechanism responsible for the ground state and excitation energies. Here, we use interferometry within an acoustic cavity—which is very sensitive to changes in the velocity of transverse sound—to reveal a new collective mode in the B phase of superfluid 3He (3He-B). We identify the mode as an excited bound state of Cooper pairs, which is weakly bound with an excitation energy within 1% of the pair-breaking edge. On the basis of the selection rules for coupling of transverse sound to a collective mode in 3He-B, combined with the observation of acoustic birefringence near the collective mode frequency, we infer that the new mode is most likely a spin-triplet (S=1), f-wave pair exciton (orbital momentum L=3) with total angular momentum, J=4. The existence of a pair exciton with J=4 suggests an attractive, subdominant, f-wave pairing interaction in liquid 3He.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

  2. 2.

    & Superconducting alloys at finite temperatures. Sov. Phys. JETP 9, 220–221 (1959).

  3. 3.

    Coherent excited states in the theory of superconductivity: Gauge invariance and the Meissner effect. Phys. Rev. 110, 827–835 (1958).

  4. 4.

    Transformation of Gorkov’s equation for type II superconductors into transport-like equations. Zeit. f. Phys. A 214, 195–213 (1968).

  5. 5.

    On the energy spectrum on superconductors. Sov. Phys. JETP 7, 505–508 (1958).

  6. 6.

    , & Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state. Phys. Rev. 110, 936–938 (1958).

  7. 7.

    & Superfluidity in neutron stars. Nature 316, 27–32 (1985).

  8. 8.

    , , , & Formation dynamics of a fermion pair condensate. Phys. Rev. Lett. 94, 180401 (2005).

  9. 9.

    et al. Precision measurements of collective oscillations in the BEC-BCS crossover. Phys. Rev. Lett. 98, 040401 (2007).

  10. 10.

    & p-wave superconductivity in the ferromagnetic superconductor URhGe. Phys. Rev. Lett. 94, 247006 (2005).

  11. 11.

    & Organic conductors and superconductors. Adv. Phys. 31, 299–490 (1982).

  12. 12.

    , , , & Superconductor-insulator transition in two dimensions. Phys. Rev. B 60, 4320–4328 (1999).

  13. 13.

    A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

  14. 14.

    & The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).

  15. 15.

    Superfluid He-3 and unconventional superconductors. Physica C 317, 55–72 (1999).

  16. 16.

    & in Helium Three (eds Halperin, W. P. & Pitaevskii, L. P.) (Elsevier, Amsterdam, 1990).

  17. 17.

    , , & Collective modes and f-wave pairing interactions in superfluid 3He. Phys. Rev. Lett. 97, 115301 (2006).

  18. 18.

    , , & Magnetoacoustic spectroscopy in superfluid 3He-B. Phys. Rev. Lett. 100, 015301 (2008).

  19. 19.

    , & Propagation of zero sound in superfluid 3He-B under magnetic field. J. Low Temp. Phys. 105, 221–253 (1996).

  20. 20.

    , & Ultrasonic spectroscopy of the J=1 collective mode in superfluid 3He-B. Phys. Rev. Lett. 59, 461–464 (1987).

  21. 21.

    , , & Splitting of the squashing collective mode of superfluid 3He-B by a magnetic field. Phys. Rev. Lett. 61, 1732–1735 (1988).

  22. 22.

    f-wave correlations in superfluid 3He. Phys. Rev. B 34, 4861–4864 (1986).

  23. 23.

    , , & Acoustic attenuation in superfluid 3He-B at low pressures. J. Low Temp. Phys. 79, 75–91 (1990).

  24. 24.

    Collisionless collective modes in superfluid 3He. Physica B 90, 96–106 (1977).

  25. 25.

    et al. Ultrasound studies of the heavy fermion superconductors UPt3, UBe13, and (U,Th)Be13. Physica 135, 23–26 (1985).

  26. 26.

    , & Electromagnetic power absorption by collective modes in unconventional superconductors. Phys. Rev. Lett. 69, 1447–1450 (1992).

  27. 27.

    , , , & Evidence of electromagnetic absorption by collective modes in the heavy fermion superconductor UBe13. Phys. Rev. Lett. 88, 247005 (2002).

  28. 28.

    et al. Observation of a collective mode in superconducting UBe13. Phys. Rev. Lett. 55, 2479–2482 (1985).

  29. 29.

    & Collective order-parameter modes for hypothetical p-wave superconducting states in Sr2RuO4. Phys. Rev. B 62, 4036–4041 (2000).

  30. 30.

    , & Effect of order parameter collective mode on electronic Raman spectra of spin-triplet superconductor Sr2RuO4. J. Phys. Soc. Japan 76, 034710 (2007).

  31. 31.

    et al. Observation of Leggett’s collective mode in a multi-band MgB2 superconductor. Phys. Rev. Lett. 99, 227002 (2007).

  32. 32.

    & Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 47, 811–814 (1981).

  33. 33.

    & Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 45, 660–662 (1980).

  34. 34.

    , & Tunneling into current-carrying surface states of high-Tc superconductors. Phys. Rev. Lett. 79, 281–284 (1997).

  35. 35.

    & Coupling of order-parameter modes with l≥1 to zero sound in 3He-B. Phys. Rev. B 23, 4798–4801 (1981).

  36. 36.

    & Response functions and collective modes of 3He in strong magnetic fields. Phys. Rev. B 33, 6068–6087 (1986).

  37. 37.

    in Application of Methods of Quantum Field Theory to Problems of Many Particles (ed. Alekseyeva, A. I.) (GOS ATOM ISDAT, Moscow, 1963).

  38. 38.

    Collective modes and spin waves in superfluid 3He-B. J. Low Temp. Phys. 24, 755–768 (1976).

  39. 39.

    , , & Theory of transverse acoustic impedance of superfluid 3He. J. Low Temp. Phys. 149, 294–313 (2007).

  40. 40.

    & Transverse waves in superfluid 3He-B. J. Low Temp. Phys. 91, 13–37 (1993).

  41. 41.

    , , & Discovery of the acoustic Faraday effect in superfluid 3He-B. Nature 400, 431–433 (1999).

  42. 42.

    & Interaction effects on the Zeeman splitting of collective modes in superfluid 3He-B. Phys. Rev. Lett. 49, 1183–1186 (1982).

  43. 43.

    3He specific heat and thermometry at millikelvin temperatures. Phys. Rev. B 33, 7520–7538 (1986).

  44. 44.

    & Free energy of superfluid 3He. Phys. Rev. B 13, 4745–4765 (1976).

  45. 45.

    & Comment on the coupling of zero sound to the J=1 modes of 3He-B. J. Low Temp. Phys. 90, 337–341 (1993).

  46. 46.

    & Magnetic field dependence of zero-sound attenuation close to the pair-breaking edge in 3He-B due to J=1, Jz=±1 collective modes. J. Low Temp. Phys. 57, 601–618 (1984).

  47. 47.

    Effects of the dipole interaction in superfluid 3He-B. Phys. Rev. B 36, 79–96 (1987).

  48. 48.

    & Response functions and collective modes of 3He in strong magnetic fields: Determination of material parameters from experiments. Phys. Rev. B 38, 2526–2532 (1988).

  49. 49.

    , & Impurity induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

Download references

Acknowledgements

We acknowledge support from the National Science Foundation, DMR-0703656 and thank W. J. Gannon, M. J. Graf, Y. Lee, M. W. Meisel and B. Reddy for useful discussions.

Author information

Affiliations

  1. Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

    • J. P. Davis
    • , J. Pollanen
    • , H. Choi
    • , J. A. Sauls
    •  & W. P. Halperin

Authors

  1. Search for J. P. Davis in:

  2. Search for J. Pollanen in:

  3. Search for H. Choi in:

  4. Search for J. A. Sauls in:

  5. Search for W. P. Halperin in:

Corresponding author

Correspondence to W. P. Halperin.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information and Supplementary Figure 1

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys969

Further reading