Article | Published:

Cross-sectional imaging of spin injection into a semiconductor

Nature Physics volume 3, pages 872877 (2007) | Download Citation

Subjects

Abstract

Recent discoveries of phenomena that relate electronic transport in solids to the spin angular momentum of the electrons are the fundamentals of spin electronics (spintronics). The first proposed conceptual spintronic device, the spin field-effect transistor—which has not yet been successfully implemented—requires the creation and detection of spin-polarized currents in a semiconductor. Whereas electrical spin injection from a ferromagnetic metal into GaAs has been achieved recently, the detection techniques used up to now have drawbacks like the requirement of large magnetic fields or limited information about the spin polarization in the semiconductor. Here we introduce a method that, by observation across a cleaved edge, enables us to directly visualize fully remanent electrical spin injection into bulk GaAs from a ferromagnetic contact, to image the spin-density distribution in the semiconductor in a cross-sectional view and to separate the effects of spin diffusion and electron drift.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Spintronics: Fundamental and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  2. 2.

    & Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

  3. 3.

    et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

  4. 4.

    , , , & Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240–1242 (2002).

  5. 5.

    , , , & Spin injection and relaxation in ferromagnet–semiconductor heterostructures. Phys. Rev. B 71, 121301 (2005).

  6. 6.

    et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

  7. 7.

    et al. Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure. Appl. Phys. Lett. 81, 265–267 (2002).

  8. 8.

    et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO (100). Phys. Rev. Lett. 94, 056601 (2005).

  9. 9.

    et al. Spin injection from a perpendicular magnetized ferromagnetic δ-MnGa into (Al,Ga)As heterostructures. Appl. Phys. Lett. 89, 112511 (2006).

  10. 10.

    et al. Electron spin injection into GaAs from ferromagnetic contacts in remanence. Appl. Phys. Lett. 87, 032502 (2005).

  11. 11.

    , , , & Remanent electrical spin injection from Fe into AlGaAs/GaAs light emitting diodes. Appl. Phys. Lett. 89, 072505 (2006).

  12. 12.

    et al. Electrical detection of spin accumulation at a ferromagnet–semiconductor interface. Phys. Rev. Lett. 96, 176603 (2006).

  13. 13.

    & Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 9, 695 (1966).

  14. 14.

    , , , & Magnetocrystalline volume and interface anisotropies in epitaxial films: Universal relation and Néel’s model. J. Appl. Phys. 93, 8230–8235 (2003).

  15. 15.

    & Spin diffusion and injection in semiconductor structures: Electric field effects. Phys. Rev. B 66, 235302 (2002).

  16. 16.

    & Spin injection into semiconductors. Sov. Phys. Semicond. 10, 698–700 (1976).

  17. 17.

    & in Optical Orientation (eds Meier, F. & Zakharchenya, B. P.) Ch. 9, 381–422 (North-Holland, Amsterdam, 1984).

  18. 18.

    & Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

  19. 19.

    et al. Low-temperature spin relaxation in n-type GaAs. Phys. Rev. B 66, 245204 (2002).

  20. 20.

    , & Spin polarization of semiconductor carriers by reflection off a ferromagnet. Phys. Rev. Lett. 89, 156601 (2002).

  21. 21.

    & Spin accumulation in degenerate semiconductors near modified Schottky contact with ferromagnets: Spin injection and extraction. Phys. Rev. B 72, 115322 (2005).

  22. 22.

    et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

  23. 23.

    & Spin extraction theory and its relevance to spintronics. Phys. Rev. Lett. 98, 046602 (2007).

  24. 24.

    , , & Spin polarized transport in 1D and 2D semiconductor heterostructures. Mater. Sci. Forum 297–298, 205–212 (1999).

  25. 25.

    , , & Gate-induced spin precession in an In0.53Ga0.47As two dimensional electron gas. Eur. Phys. J. AP 4, 1–4 (1998).

  26. 26.

    , , & Epitaxial Fe films on GaAs(001): Does the substrate surface reconstruction affect the uniaxial magnetic anisotropy? J. Appl. Phys. 91, 8757–8759 (2002).

Download references

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under FOR 370 and SFB 689. We thank B. Muermann and J. Ehehalt for assistance with programming some of the measurement procedures, P. Chen for characterization of the GaAs materials and J. Fabian for discussions.

Author information

Affiliations

  1. Institut für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany

    • P. Kotissek
    • , M. Bailleul
    • , M. Sperl
    • , A. Spitzer
    • , D. Schuh
    • , W. Wegscheider
    • , C. H. Back
    •  & G. Bayreuther
  2. Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 ULP-CNRS, 23 rue du Loess, BP 43, 67034 Strasbourg, France

    • M. Bailleul

Authors

  1. Search for P. Kotissek in:

  2. Search for M. Bailleul in:

  3. Search for M. Sperl in:

  4. Search for A. Spitzer in:

  5. Search for D. Schuh in:

  6. Search for W. Wegscheider in:

  7. Search for C. H. Back in:

  8. Search for G. Bayreuther in:

Contributions

P.K. designed and carried out the experiments, analysed the data and prepared the manuscript; M.B. conceived the main experiment, developed the theoretical data analysis and contributed to the manuscript; M.S. carried out the SQUID measurements and contributed to the manuscript; A.S. carried out part of the sample preparation; D.S. grew the semiconductor materials; W.W. devised the project and contributed materials; C.H.B. provided support for the optical measurements and contributed to the manuscript; G.B. devised the project, contributed to the data analysis and wrote the paper.

Corresponding author

Correspondence to G. Bayreuther.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1 and 2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys734

Further reading