Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symmetry of large physical systems implies independence of subsystems

Abstract

Composite systems consisting of a large number of similar subsystems play an important role in many areas of physics as well as in information theory. Their analysis, however, often relies on the assumption that the subsystems are mutually independent (or only weakly correlated). Here, we show that this assumption is generally justified for quantum systems that are symmetric, that is, invariant under permutations of the subsystems. Because symmetry is often implied by natural properties, for example, the indistinguishability of identical particles, the result has a wide range of consequences. In particular, it implies that global properties of a large composite system can be estimated by measurements applied to a limited number of (randomly chosen) sample subsystems, a fact that is important for the interpretation of experimental data. Moreover, it generalizes statements in quantum information theory and cryptography, which previously have only been known to hold under certain independence assumptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tomography.
Figure 2: Symmetry.
Figure 3: Relation between symmetry and i.i.d.
Figure 4: The effect of symmetrization.

Similar content being viewed by others

References

  1. de Finetti, B. La prévision: Ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68 (1937).

    MathSciNet  MATH  Google Scholar 

  2. Monari, P. & Cocchi, D. (eds) Introduction to Bruno de Finetti’s “Probabilià e Induzione” (Cooperativa Libraria Universitaria Editrice, Bologna, 1993).

  3. Diaconis, P. & Freedman, D. Finite exchangeable sequences. Ann. Probab. 8, 745–764 (1980).

    Article  MathSciNet  Google Scholar 

  4. Størmer, E. Symmetric states of infinite tensor products of C*-algebras. J. Funct. Anal. 3, 48–68 (1969).

    Article  MathSciNet  Google Scholar 

  5. Hudson, R. L. & Moody, G. R. Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrschein. verw. Geb. 33, 343–351 (1976).

    Article  MathSciNet  Google Scholar 

  6. Fannes, M., Lewis, J. T. & Verbeure, A. Symmetric states of composite systems. Lett. Math. Phys. 15, 255–260 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  7. Raggio, G. A. & Werner, R. F. Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989).

    MathSciNet  MATH  Google Scholar 

  8. Petz, D. A de Finetti-type theorem with m-dependent states. Probab. Theory Related Fields 85, 65–72 (1990).

    Article  MathSciNet  Google Scholar 

  9. Caves, C. M., Fuchs, C. A. & Schack, R. Unknown quantum states: The quantum de Finetti representation. J. Math. Phys. 43, 4537–4559 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  10. König, R. & Renner, R. A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46, 122108 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  11. Christandl, M., König, R., Mitchison, G. & Renner, R. One-and-a-half quantum de Finetti theorems. Comm. Math. Phys. 273, 473–498 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  12. D’Cruz, C., Osborne, T. J. & Schack, R. Finite de Finetti theorem for infinite-dimensional systems. Phys. Rev. Lett. 98, 160406 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. Fuchs, C. A., Schack, R. & Scudo, P. F. De Finetti representation theorem for quantum process tomography. Phys. Rev. A 69, 062305 (2004).

    Article  ADS  Google Scholar 

  14. Reed, M. & Simon, B. Methods in Modern Mathematical Physics Vol. 1 (Academic, New York, 1972).

    MATH  Google Scholar 

  15. Bennett, C. H. & Brassard, G. Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing 175–179 (IEEE Computer Society, New York, 1984).

    Google Scholar 

  16. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  17. Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  18. Mayers, D. Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001).

    Article  MathSciNet  Google Scholar 

  19. Lo, H.-K. & Chau, H. F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999).

    Article  ADS  Google Scholar 

  20. Shor, P. W. & Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).

    Article  ADS  Google Scholar 

  21. Biham, E. & Mor, T. Security of quantum cryptography against collective attacks. Phys. Rev. Lett. 78, 2256–2259 (1997).

    Article  ADS  Google Scholar 

  22. Biham, E., Boyer, M., Brassard, G., van de Graaf, J. & Mor, T. Security of quantum key distribution against all collective attacks. Algorithmica 34, 372–388 (2002).

    Article  MathSciNet  Google Scholar 

  23. Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207–235 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  24. Renner, R. Security of Quantum Key Distribution. Thesis, Swiss Federal Institute of Technology (ETH) Zurich (2005).

  25. Fannes, M., Spohn, H. & Verbeure, A. Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  26. Koenig, R. & Mitchison, G. A most compendious and facile quantum de Finetti theorem. Preprint at <http://arxiv.org/abs/quant-ph/0703210v1> (2007).

  27. Hudson, R. L. Analogs of de Finetti’s theorem and interpretative problems of quantum mechanics. Found. Phys. 11, 805–808 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  28. Brassard, G. Is information the key? Nature Phys. 1, 2–4 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank C. Bennett, M. Christandl, R. Colbeck, A. Ekert, R. König, U. Maurer and G. Mitchison for their helpful comments on earlier versions of the manuscript. This research was supported by HP Labs Bristol and by the EU through the project SECOQC. Parts of this work have been accomplished while the author was at ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Renner.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, R. Symmetry of large physical systems implies independence of subsystems. Nature Phys 3, 645–649 (2007). https://doi.org/10.1038/nphys684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing