Abstract

Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering1,2. Experimentally, the rare observations thus far include the universal thermal conductance quantum3,4,5,6,7 and heat interferometry8. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann–Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity9. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (temperature × kB/h). This observation establishes the different nature of the quantum laws for thermal transport in nanocircuits.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11, 118–123 (2015).

  2. 2.

    & Quantum thermodynamics. Contemp. Phys. 57, 545–579 (2016).

  3. 3.

    , , & Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

  4. 4.

    , & Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

  5. 5.

    et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013).

  6. 6.

    et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

  7. 7.

    et al. Quantized thermal transport in single-atom junctions. Science 355, 1192–1195 (2017).

  8. 8.

    & The Josephson heat interferometer. Nature 492, 401–405 (2012).

  9. 9.

    , & Equilibration of quantum Hall edge states by an Ohmic contact. Phys. Rev. B 88, 165307 (2013).

  10. 10.

    Residual resistivity dipoles. Z. Phys. B 21, 247–254 (1975).

  11. 11.

    Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986).

  12. 12.

    & Kinetic phenomena and charge discreteness effects in granulated media. Sov. Phys. JETP 41, 308–316 (1975).

  13. 13.

    & Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62, 345–373 (1986).

  14. 14.

    Anomalous current-voltage characteristics of tunnel junctions. Sov. Phys. JETP 68, 561–566 (1989).

  15. 15.

    Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) (Plenum, 1992).

  16. 16.

    Quantum fluctuations of the charge of a metal particle under the Coulomb blockade conditions. Sov. Phys. JETP 72, 892–899 (1991).

  17. 17.

    et al. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states. Nature 526, 233–236 (2015).

  18. 18.

    Capacitance and conductance of mesoscopic systems connected by quantum point contacts. Phys. Rev. B 48, 11156–11166 (1993).

  19. 19.

    , , & Direct link between Coulomb blockade and shot noise in a quantum-coherent structure. Phys. Rev. Lett. 87, 046802 (2001).

  20. 20.

    & Interaction effects on counting statistics and the transmission distribution. Phys. Rev. Lett. 91, 136802 (2003).

  21. 21.

    , , , & Experimental test of the dynamical coulomb blockade theory for short coherent conductors. Phys. Rev. Lett. 99, 256805 (2007).

  22. 22.

    et al. Strong back-action of a linear circuit on a single electronic quantum channel. Nat. Phys. 7, 935–938 (2011).

  23. 23.

    et al. Tomonaga-Luttinger physics in electronic quantum circuits. Nat. Commun. 4, 1802 (2013).

  24. 24.

    et al. Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109, 026803 (2012).

  25. 25.

    et al. Thermal conductance of a single-electron transistor. Phys. Rev. Lett. 119, 077701 (2017).

  26. 26.

    & Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).

  27. 27.

    , , , & Input noise voltage below 1 nV/Hz1/2 at 1 kHz in the HEMTs at 4.2 K. J. Low Temp. Phys. 167, 632–637 (2012).

  28. 28.

    et al. Primary thermometry triad at 6 mK in mesoscopic circuits. Nat. Commun. 7, 12908 (2016).

  29. 29.

    & Semiclassical theory of conductance and noise in open chaotic cavities. Phys. Rev. Lett. 84, 1280–1283 (2000).

  30. 30.

    & Electron–phonon interaction in disordered conductors: static and vibrating scattering potentials. Phys. Rev. B 61, 6041–6047 (2000).

  31. 31.

    & Charge-relaxation and dwell time in the fluctuating admittance of a chaotic cavity. Europhys. Lett. 37, 441–446 (1997).

  32. 32.

    et al. Dephasing of electrons in mesoscopic metal wires. Phys. Rev. B 68, 085413 (2003).

  33. 33.

    et al. Electron and phonon cooling in a superconductor-normal metal-superconductor tunnel junction. Phys. Rev. Lett. 99, 047004 (2007).

Download references

Acknowledgements

This work was supported by the French RENATECH network, the national French program ‘Investissements d’Avenir’ (Labex NanoSaclay, ANR-10-LABX-0035) and the French National Research Agency (project QuTherm, ANR-16-CE30-0010-01). We thank E. Sukhorukov for discussions.

Author information

Affiliations

  1. Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120 Palaiseau, France

    • E. Sivre
    • , A. Anthore
    • , F. D. Parmentier
    • , A. Cavanna
    • , U. Gennser
    • , A. Ouerghi
    • , Y. Jin
    •  & F. Pierre
  2. Univ. Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France

    • A. Anthore

Authors

  1. Search for E. Sivre in:

  2. Search for A. Anthore in:

  3. Search for F. D. Parmentier in:

  4. Search for A. Cavanna in:

  5. Search for U. Gennser in:

  6. Search for A. Ouerghi in:

  7. Search for Y. Jin in:

  8. Search for F. Pierre in:

Contributions

E.S. and F.P. performed the experiment with inputs from A.A.; A.A., E.S. and F.P. analysed the data; F.D.P. fabricated the sample with inputs from A.A.; A.C., A.O. and U.G. grew the 2DEG; Y.J. fabricated the high-electron-mobility transistor (HEMT) used for noise measurements; F.P. led the project and wrote the manuscript with inputs from A.A., E.S. and U.G.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to F. Pierre.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys4280

Further reading