Article | Published:

Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian

Nature Physics volume 13, pages 11951200 (2017) | Download Citation

Abstract

Ring exchange is an elementary interaction for modelling unconventional topological matter. Here, we report the observation of four-body ring-exchange interactions and the topological properties of anyonic excitations within an ultracold atom system. A minimum toric-code Hamiltonian, in which the ring exchange is the dominant term, was implemented in disconnected four-spin plaquette arrays formed by two orthogonal superlattices. The ring-exchange interactions were resolved from the dynamical evolutions of the spin orders in each plaquette, matching well with the predicted energy gaps between two anyonic excitations of the spin system. A braiding operation was applied to the spins in the plaquettes and an induced phase 1.00(3)π in the four-spin state was observed, confirming 1/2 mutual statistics. This work offers new prospects for the quantum simulation of topological phases by engineering many-body interactions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  2. 2.

    Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

  3. 3.

    Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

  4. 4.

    Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

  5. 5.

    Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

  6. 6.

    , & Scheme for demonstration of fractional statistics of anyons in an exactly solvable model. Phys. Rev. Lett. 98, 150404 (2007).

  7. 7.

    , , , & Simulating open quantum systems: from many-body interactions to stabilizer pumping. New J. Phys. 13, 085007 (2011).

  8. 8.

    et al. Two-dimensional lattice gauge theories with superconducting quantum circuits. Ann. Phys. 351, 634–654 (2014).

  9. 9.

    & Minimum instances of topological matter in an optical plaquette. Phys. Rev. A 77, 023603 (2008).

  10. 10.

    , , , & Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).

  11. 11.

    , , & Creation, manipulation, and detection of Abelian and non-Abelian anyons in optical lattices. Phys. Rev. Lett. 101, 260501 (2008).

  12. 12.

    , , , & A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).

  13. 13.

    Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).

  14. 14.

    , , , & Simulation of non-Abelian gauge theories with optical lattices. Nat. Commun. 4, 3615 (2013).

  15. 15.

    et al. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. Phys. Rev. Lett. 110, 125303 (2013).

  16. 16.

    , & Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2016).

  17. 17.

    et al. Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. Phys. Rev. Lett. 102, 030502 (2009).

  18. 18.

    et al. Revealing anyonic features in a toric code quantum simulation. New J. Phys. 11, 083010 (2009).

  19. 19.

    , & Experimental simulation of anyonic fractional statistics with an nmr quantum-information processor. Phys. Rev. A 88, 022305 (2013).

  20. 20.

    , , & Simulation of anyonic statistics and its topological path independence using a seven-qubit quantum simulator. New J. Phys. 18, 043043 (2016).

  21. 21.

    et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

  22. 22.

    et al. Anyonic interferometry and protected memories in atomic spin lattices. Nat. Phys. 4, 482–488 (2008).

  23. 23.

    , , , & Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

  24. 24.

    , & Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  25. 25.

    et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

  26. 26.

    et al. Quantum dynamics of a mobile spin impurity. Nat. Phys. 9, 235–241 (2013).

  27. 27.

    et al. Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices. Phys. Rev. Lett. 108, 205301 (2012).

  28. 28.

    et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

  29. 29.

    , , , & Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

  30. 30.

    et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

  31. 31.

    et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).

  32. 32.

    et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

  33. 33.

    et al. Generation and detection of atomic spin entanglement in optical lattices. Nat. Phys. 12, 783–787 (2016).

  34. 34.

    et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

  35. 35.

    et al. Two-dimensional superexchange-mediated magnetization dynamics in an optical lattice. Science 348, 540–544 (2015).

  36. 36.

    et al. Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).

  37. 37.

    et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

  38. 38.

    et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

  39. 39.

    , , & Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

  40. 40.

    , & Superfluid–insulator transition in a periodically driven optical lattice. Phys. Rev. Lett. 95, 260404 (2005).

  41. 41.

    , , & Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

  42. 42.

    , , & d-wave resonating valence bond states of fermionic atoms in optical lattices. Phys. Rev. Lett. 96, 250402 (2006).

  43. 43.

    Quantum Field Theory of Many-Body Systems (Oxford Univ. Press, 2004).

  44. 44.

    & Plaquette Boson–Fermion model of cuprates. Phys. Rev. B 65, 104508 (2002).

  45. 45.

    Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

  46. 46.

    , & Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

  47. 47.

    , , & Anyonic braiding in optical lattices. Proc. Natl Acad. Sci. USA 104, 18415–18420 (2007).

  48. 48.

    , & Creation and manipulation of anyons in the Kitaev model. Phys. Rev. Lett. 100, 177204 (2008).

  49. 49.

    , , , & Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

Download references

Acknowledgements

We thank A. J. Leggett, P. Zoller and B. Zhao for helpful discussions. This work was supported by the National Key R&D Program of China (2016YFA0301600), National Natural Science Foundation of China (91421305, 11521063), and the Chinese Academy of Sciences.

Author information

Author notes

    • Han-Ning Dai
    •  & Bing Yang

    These authors contributed equally to this work.

Affiliations

  1. Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • Han-Ning Dai
    • , Bing Yang
    • , Hui Sun
    • , Yu-Ao Chen
    • , Zhen-Sheng Yuan
    •  & Jian-Wei Pan
  2. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany

    • Han-Ning Dai
    • , Bing Yang
    • , Andreas Reingruber
    • , Xiao-Fan Xu
    • , Zhen-Sheng Yuan
    •  & Jian-Wei Pan
  3. CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • Han-Ning Dai
    • , Bing Yang
    • , Hui Sun
    • , Yu-Ao Chen
    • , Zhen-Sheng Yuan
    •  & Jian-Wei Pan
  4. Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger-Strasse, Building 46, 67663 Kaiserslautern, Germany

    • Andreas Reingruber
  5. CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China

    • Yu-Ao Chen
    • , Zhen-Sheng Yuan
    •  & Jian-Wei Pan

Authors

  1. Search for Han-Ning Dai in:

  2. Search for Bing Yang in:

  3. Search for Andreas Reingruber in:

  4. Search for Hui Sun in:

  5. Search for Xiao-Fan Xu in:

  6. Search for Yu-Ao Chen in:

  7. Search for Zhen-Sheng Yuan in:

  8. Search for Jian-Wei Pan in:

Contributions

Y.-A.C., Z.-S.Y. and J.-W.P. initiated and designed this research project. H.-N.D., B.Y., A.R., X.-F.X. and Z.-S.Y. set up the experiment. H.-N.D., B.Y., A.R. and H.S. performed the measurement and analysed the data. All authors contributed to manuscript preparation. Z.-S.Y. and J.-W.P. supervised the whole project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Zhen-Sheng Yuan or Jian-Wei Pan.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys4243