Active tension network model suggests an exotic mechanical state realized in epithelial tissues


Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal—‘isogonal’—deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Force balance in a tension net defines a triangulation of the ‘tension plane’.
Figure 2: Role of myosin motors in the ATN model.
Figure 3: Mechanical properties of an ATN.
Figure 4: Experimental tests of ATN model predictions.


  1. 1

    Bellaiche, Y. & Heisenberg, C. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    Article  Google Scholar 

  2. 2

    Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S. & Julicher, F. The influence of cell mechanics, cell–cell interactions, and the proliferation of epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  Google Scholar 

  3. 3

    Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008).

    Article  Google Scholar 

  4. 4

    He, B., Doubrovinski, K., Polyakov, O. & Wieschaus, E. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature 508, 392–396 (2014).

    ADS  Article  Google Scholar 

  5. 5

    Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns, and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  Google Scholar 

  6. 6

    Nelson, C. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11594–11599 (2005).

    ADS  Article  Google Scholar 

  7. 7

    Shraiman, B. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    ADS  Article  Google Scholar 

  8. 8

    Fernandez-Gonzalez, R., Simeos, M., Roper, J. C., Eaton, S. & Zallen, J. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    Article  Google Scholar 

  9. 9

    MacKintosh, F. C. & Levine, A. J. Nonequilibrium mechanics and dynamics of motor-activated gels. Phys. Rev. Lett. 100, 018104 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, 606–616 (2002).

    Article  Google Scholar 

  11. 11

    Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis. Cell 22, 536–545 (2012).

    Google Scholar 

  12. 12

    Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669 (2008).

    Article  Google Scholar 

  13. 13

    Wozniak, M. & Chen, C. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

    Article  Google Scholar 

  14. 14

    Kasza, K. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).

    Article  Google Scholar 

  15. 15

    Honda, H. Geometric models for cells in tissues. Int. Rev. Cytol. 81, 191–248 (1983).

    Article  Google Scholar 

  16. 16

    Chiou, K., Hufnagel, L. & Shraiman, B. Mechanical stress inference for two dimensional cell arrays. PLoS Comp. Biol. 8, e1002512 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1144–1189 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294–299 (1864).

    Article  Google Scholar 

  19. 19

    Henkes, S., OHern, C. S. & Chakraborty, B. Entropy and temperature of a static granular assembly: an ab initio approach. Phys. Rev. Lett. 99, 038002 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Choi, W. et al. Remodeling the zonula adherens in response to tension and the role of afadin in this reponse. J. Cell Biol 213, 243–260 (2016).

    Article  Google Scholar 

  21. 21

    Cavey, M. & Lecuit, T. Molecular bases of cell–cell junctions stability and dynamics. Cold Spring Harb. Perspect. Biol. 1, a002998 (2009).

    Article  Google Scholar 

  22. 22

    Clemen, A. et al. Force-dependent stepping kinetics of myosin-V. Biophys. J. 88, 4402–4410 (2005).

    ADS  Article  Google Scholar 

  23. 23

    Norstrom, M., Smithback, P. A. & Rock, R. Unconventional processive mechanics of non-muscle myosin IIB. J. Biol. Chem. 285, 26326–26334 (2010).

    Article  Google Scholar 

  24. 24

    Kolomeisky, A. B. & Fisher, M. Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007).

    ADS  Article  Google Scholar 

  25. 25

    Pouille, P. A., Ahmadi, P., Brunet, A. C. & Farge, E. Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal 2, ra16 (2009).

    Article  Google Scholar 

  26. 26

    Villain, J. in Ordering in Strongly Fluctuating Condensed Matter Systems (ed. Riste, T.) 221 (Plenum, 1980).

    Google Scholar 

  27. 27

    Sweeton, D., Parks, S., Costa, M. & Wieschaus, E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112, 775–789 (1991).

    Google Scholar 

  28. 28

    Martin, A. C., Kaschube, M. & Wieschaus, E. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Massey, F. Jr The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).

    Article  Google Scholar 

  30. 30

    Rauskolb, C. et al. Cytoskeletal tension inhibits hippo signaling through an Ajuba-Warts complex. Cell 158, 143–156 (2014).

    Article  Google Scholar 

  31. 31

    Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed in their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 15050–15055 (2002).

    ADS  Article  Google Scholar 

  32. 32

    Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).

    Article  Google Scholar 

Download references


The authors gratefully acknowledge stimulating discussions with K. Irvine, T. Lecuit and E. Wieschaus, and thank K. Irvine for sharing the wing imaginal disc data. This work was supported by the NSF PHY-1220616 (B.I.S., N.N.) and PHY-1125915 (M.M.), GBMF grant #2919 (B.I.S./I.H.) and NICHD 5K99HD088708-02 (S.J.S.).

Author information




Model formulation and analysis: B.I.S., I.H., M.M. and N.N. Experimental data: S.J.S. Numerical simulations and data analysis: N.N. Manuscript: B.I.S. and N.N. All authors discussed the results and implications of the work as well as provided critical comments on the manuscript at all stages.

Corresponding author

Correspondence to Boris I. Shraiman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1012 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noll, N., Mani, M., Heemskerk, I. et al. Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nature Phys 13, 1221–1226 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing