Letter | Published:

Experimental quantum teleportation of a two-qubit composite system


Quantum teleportation1, a way to transfer the state of a quantum system from one location to another, is central to quantum communication2 and plays an important role in a number of quantum computation protocols3,4,5. Previous experimental demonstrations have been implemented with single photonic6,7,8,9,10,11 or ionic qubits12,13. However, teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2,3,4,5. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system14. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols3,15,16,17,18.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

  2. 2

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  3. 3

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

  4. 4

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  5. 5

    Grover, L. K. Quantum telecomputation. Preprint at <http://arxiv.org/abs/quant-ph/9704012> (1997).

  6. 6

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

  7. 7

    Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

  8. 8

    Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

  9. 9

    Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

  10. 10

    Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849 (2004).

  11. 11

    Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

  12. 12

    Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

  13. 13

    Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

  14. 14

    Hayashi, A., Hashimoto, T. & Horibe, M. Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 72, 032325 (2005).

  15. 15

    Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).

  16. 16

    Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).

  17. 17

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

  18. 18

    Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

  19. 19

    Lee, J. & Kim, M. S. Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236–4239 (2000).

  20. 20

    Rigolin, G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005).

  21. 21

    Cleve, R., Gottesman, D. & Lo, H.-K. How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999).

  22. 22

    Kwiat, P. G. et al. New high intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

  23. 23

    Pan, J.-W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001).

  24. 24

    Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed source. Ann. NY Acad. Sci. 755, 91–102 (1995).

  25. 25

    Pan, J.-W. & Zeilinger, A. Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998).

  26. 26

    Zou, X.-B. & Mathis, W. Generating a four-photon polarization-entangled cluster state. Phys. Rev. A 71, 032308 (2005).

  27. 27

    Hein, M., Eisert, J. & Briegel, J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).

  28. 28

    Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

Download references


This work was supported by the Marie Curie Excellence Grant of the EU and the Alexander von Humboldt Foundation. This work was also supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences.

Author information

Correspondence to Qiang Zhang or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information (PDF 103 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Schematic diagram showing the principle of two-qubit quantum teleportation.
Figure 2: A schematic diagram of the experimental setup.
Figure 3: Experimental results for the teleportation of the |χA state and the |χB state.
Figure 4: Experimental results for |χC teleportation.