Excitonic superfluid phase in double bilayer graphene

Article metrics


A spatially indirect exciton is created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite boson1,2. Such excitons are long-lived, and in the limit of strong interactions are predicted to undergo a Bose–Einstein condensate-like phase transition into a superfluid ground state1,2,3. Here, we report evidence of an exciton condensate in the quantum Hall effect regime of double-layer structures of bilayer graphene. Interlayer correlation is identified by quantized Hall drag at matched layer densities, and the dissipationless nature of the phase is confirmed in the counterflow geometry4,5. A selection rule for the condensate phase is observed involving both the orbital and valley indices of bilayer graphene. Our results establish double bilayer graphene as an ideal system for studying the rich phase diagram of strongly interacting bosonic particles in the solid state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Double bilayer graphene.
Figure 2: Superfluid exciton condensate.
Figure 3: Tunability of the condensate phase.
Figure 4: Interlayer bias.


  1. 1

    Lozovik, Y. E. & Yudson, V. Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).

  2. 2

    Pogrebinsky, M. B. Mutual drag of carriers in a semiconductor–insulator–semiconductor system. Fiz. Tekh. Poluprovodn 11, 637–644 (1977).

  3. 3

    Blatt, J. M., Böer, K. W. & Brandt, W. Bose–Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).

  4. 4

    Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).

  5. 5

    Su, J.-J. & MacDonald, A. H. How to make a bilayer exciton condensate flow. Nat. Phys. 4, 799–802 (2008).

  6. 6

    Lozovik, Y. E. & Yudson, V. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. JETP Lett. 44, 389–397 (1976).

  7. 7

    Seamons, J. A., Morath, C. P., Reno, J. L. & Lilly, M. P. Coulomb drag in the exciton regime in electron–hole bilayers. Phys. Rev. Lett. 102, 026804 (2009).

  8. 8

    High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012).

  9. 9

    Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

  10. 10

    Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W. & He, S. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68, 1383–1386 (1992).

  11. 11

    Kellogg, M., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of quantized Hall drag in a strongly correlated bilayer electron system. Phys. Rev. Lett. 88, 126804 (2002).

  12. 12

    Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron–hole pairing. Phys. Rev. Lett. 93, 036802 (2004).

  13. 13

    Wiersma, R. D. et al. Activated transport in the separate layers that form the ν T = 1 exciton condensate. Phys. Rev. Lett. 93, 266805 (2004).

  14. 14

    Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

  15. 15

    Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

  16. 16

    Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 9, 775–779 (2013).

  17. 17

    Min, H., Bistritzer, R., Su, J.-J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008).

  18. 18

    Kim, S. et al. Coulomb drag of massless fermions in graphene. Phys. Rev. B 83, 161401 (2011).

  19. 19

    Hwang, E. H., Sensarma, R. & Das Sarma, S. Coulomb drag in monolayer and bilayer graphene. Phys. Rev. B 84, 245441 (2011).

  20. 20

    Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).

  21. 21

    Zarenia, M., Perali, A., Neilson, D. & Peeters, F. M. Enhancement of electron–hole superfluidity in double few-layer graphene. Sci. Rep. 4, 7319 (2014).

  22. 22

    McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

  23. 23

    Kou, A. et al. Electron–hole asymmetric integer and fractional quantum Hall effect in bilayer graphene. Science 345, 55–57 (2014).

  24. 24

    Hunt, B. M. et al. Competing valley, spin, and orbital symmetry breaking in bilayer graphene. Preprint at http://arXiv.org/abs/1607.06461 (2016).

  25. 25

    Song, J. C. W. & Levitov, L. S. Energy-driven drag at charge neutrality in graphene. Phys. Rev. Lett. 109, 236602 (2012).

  26. 26

    Schütt, M. et al. Coulomb drag in graphene near the Dirac point. Phys. Rev. Lett. 110, 026601 (2013).

  27. 27

    Joglekar, Y. N. & MacDonald, A. H. Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets. Phys. Rev. B 65, 235319 (2002).

  28. 28

    Champagne, A. R., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Charge imbalance and bilayer two-dimensional electron systems at ν T = 1. Phys. Rev. B 78, 205310 (2008).

  29. 29

    Lambert, J. & Côté, R. Quantum Hall ferromagnetic phases in the Landau level n = 0 of a graphene bilayer. Phys. Rev. B 87, 115415 (2013).

  30. 30

    Su, J.-J. & MacDonald, A. H. Spatially indirect exciton condensate phases in double bilayer graphene. Phys. Rev. B 95, 045416 (2017).

  31. 31

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  32. 32

    Li, J. I. A. et al. Negative Coulomb drag in double bilayer graphene. Phys. Rev. Lett. 117, 046802 (2016).

  33. 33

    Solomon, P. M., Price, P. J., Frank, D. J. & La Tulipe, D. C. New phenomena in coupled transport between 2d and 3d electron-gas layers. Phys. Rev. Lett. 63, 2508–2511 (1989).

Download references


The authors thank A. Levchenko for helpful discussions. This work was supported by the National Science Foundation (DMR-1507788). C.R.D. acknowledges partial support by the David and Lucille Packard Foundation. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.

Author information

J.I.A.L., J.H. and C.R.D. designed the experiment. Experimental work and analysis was carried out by J.I.A.L., advised by J.H. and C.R.D. All authors contributed to writing the manuscript.

Correspondence to J. I. A. Li or C. R. Dean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Taniguchi, T., Watanabe, K. et al. Excitonic superfluid phase in double bilayer graphene. Nature Phys 13, 751–755 (2017) doi:10.1038/nphys4140

Download citation

Further reading