Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

State-resolved attosecond reversible and irreversible dynamics in strong optical fields

Abstract

Strong-field ionization (SFI) is a key process for accessing real-time quantum dynamics of electrons on the attosecond timescale. The theoretical foundation of SFI was pioneered in the 1960s, and later refined by various analytical models. While asymptotic ionization rates predicted by these models have been tested to be in reasonable agreement for a wide range of laser parameters, predictions for SFI on the sub-laser-cycle timescale are either beyond the scope of the models or show strong qualitative deviations from full quantum-mechanical simulations. Here, using the unprecedented state specificity of attosecond transient absorption spectroscopy, we follow the real-time SFI process of the two valence spin–orbit states of xenon. The results reveal that the irreversible tunnelling contribution is accompanied by a reversible electronic population that exhibits an observable spin–orbit-dependent phase delay. A detailed theoretical analysis attributes this observation to transient ground-state polarization, an unexpected facet of SFI that cannot be captured by existing analytical models that focus exclusively on the production of asymptotic electron/ion yields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental scheme and results.
Figure 2: Reconstructing experimental and theoretical effective Xe+ populations from ATAS spectrograms.
Figure 3: Comparing effective and instantaneous populations.
Figure 4: Decomposing the strong-field dynamics.
Figure 5: Time evolution of the charge density induced in Xe by a strong laser field in different intensity regimes.

References

  1. 1

    Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  2. 2

    Voronov, G. S. & Delone, N. B. Many-photon ionization of the xenon atom by ruby laser radiation. Sov. Phys. JETP 23, 54–58 (1966).

    ADS  Google Scholar 

  3. 3

    Chin, S. L., Yergeau, F. & Lavigne, P. Tunnel ionisation of Xe in an ultra-intense CO2 laser field (1014 W cm−2) with multiple charge creation. J. Phys. B 18, L213 (1985).

    ADS  Article  Google Scholar 

  4. 4

    Augst, S., Meyerhofer, D. D., Strickland, D. & Chin, S. L. Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858–867 (1991).

    ADS  Article  Google Scholar 

  5. 5

    Monot, P., Auguste, T., Lompré, L. A., Mainfray, G. & Manus, C. Focusing limits of a terawatt laser in an underdense plasma. J. Opt. Soc. Am. B 9, 1579–1584 (1992).

    ADS  Article  Google Scholar 

  6. 6

    Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Neppl, S. et al. Attosecond time-resolved photoemission from core and valence states in magnesium. Phys. Rev. Lett. 109, 087401 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Sabbar, M. et al. Resonance effects in photoemission time delays. Phys. Rev. Lett. 115, 133001 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Holler, M., Schapper, F., Gallmann, L. & Keller, U. Attosecond electron wave-packet interference observed by transient absorption. Phys. Rev. Lett. 106, 123601 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Dalgarno, A. & Kingston, A. E. The refractive indices and Verdet constants of the inert gases. Proc. R. Soc. Lond. A 259, 424–431 (1960).

    ADS  Article  Google Scholar 

  18. 18

    Langhoff, P. W. & Karplus, M. Padé summation of the Cauchy dispersion equation. J. Opt. Soc. Am. 59, 863–871 (1969).

    ADS  Article  Google Scholar 

  19. 19

    Smirnova, O., Spanner, M. & Ivanov, M. Coulomb and polarization effects in sub-cycle dynamics of strong-field ionization. J. Phys. B 39, S307 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Dimitrovski, D. & Madsen, L. B. Time dependence of ionization and excitation by few-cycle laser pulses. Phys. Rev. A 78, 043424 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Greenman, L. et al. Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes. Phys. Rev. A 82, 023406 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Rohringer, N., Gordon, A. & Santra, R. Configuration-interaction-based time-dependent orbital approach for ab initio treatment of electronic dynamics in a strong optical laser field. Phys. Rev. A 74, 043420 (2006).

    ADS  Article  Google Scholar 

  23. 23

    Pabst, S., Greenman, L., Mazziotti, D. A. & Santra, R. Impact of multichannel and multipole effects on the Cooper minimum in the high-order-harmonic spectrum of argon. Phys. Rev. A 85, 023411 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Pabst, S. et al. Theory of attosecond transient-absorption spectroscopy of krypton for overlapping pump and probe pulses. Phys. Rev. A 86, 063411 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Perelomov, A. M., Popov, V. S. & Terent’ev, M. V. Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924–934 (1966).

    ADS  Google Scholar 

  26. 26

    Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  27. 27

    Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

    ADS  Article  Google Scholar 

  28. 28

    Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Jurvansuu, M., Kivimäki, A. & Aksela, S. Inherent lifetime widths of Ar 2p−1, Kr 3d−1, Xe 3d−1, and Xe 4d−1 states. Phys. Rev. A 64, 012502 (2001).

    ADS  Article  Google Scholar 

  30. 30

    Santra, R., Yakovlev, V. S., Pfeifer, T. & Loh, Z.-H. Theory of attosecond transient absorption spectroscopy of strong-field-generated ions. Phys. Rev. A 83, 033405 (2011).

    ADS  Article  Google Scholar 

  31. 31

    Leone, S. R. et al. What will it take to observe processes in ‘real time’. Nat. Photon. 8, 162–166 (2014).

    ADS  Article  Google Scholar 

  32. 32

    Karamatskou, A., Pabst, S. & Santra, R. Adiabaticity and diabaticity in strong-field ionization. Phys. Rev. A 87, 043422 (2013).

    ADS  Article  Google Scholar 

  33. 33

    Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    ADS  Article  Google Scholar 

  35. 35

    Cederbaum, L. S. & Zobeley, J. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).

    ADS  Article  Google Scholar 

  36. 36

    Breidbach, J. & Cederbaum, L. S. Migration of holes: formalism, mechanisms, and illustrative applications. J. Chem. Phys. 118, 3983–3996 (2003).

    ADS  Article  Google Scholar 

  37. 37

    Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).

    ADS  Article  Google Scholar 

  38. 38

    Timmers, H. et al. Polarization-assisted amplitude gating as a route to tunable, high-contrast attosecond pulses. Optica 3, 707–710 (2016).

    ADS  Article  Google Scholar 

  39. 39

    Pabst, S. et al. XCID–The Configuration-Interaction Dynamics Package Rev. 1220 (CFEL, DESY, 2014).

  40. 40

    Pabst, S. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto-to picosecond time scale. Eur. Phys. J. 221, 1–71 (2013).

    Google Scholar 

  41. 41

    Chen, Y.-J., Pabst, S., Karamatskou, A. & Santra, R. Theoretical characterization of the collective resonance states underlying the xenon giant dipole resonance. Phys. Rev. A 91, 032503 (2015).

    ADS  Article  Google Scholar 

  42. 42

    Santra, R., Dunford, R. W. & Young, L. Spin–orbit effect on strong-field ionization of krypton. Phys. Rev. A 74, 043403 (2006).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF) (CHE-1361226) and the US Army Research Office (ARO) (W911NF-14-1-0383). Z.-H.L. acknowledges support from the Ministry of Education (MOE2014-T2-2-052) and the Agency for Science, Technology and Research (1223600008 and 1321202083). S.P. is funded by the Alexander von Humboldt Foundation and by the NSF through a grant to ITAMP.

Author information

Affiliations

Authors

Contributions

M.S. and H.T. performed the experiment and the data analysis. M.S., H.T., Z.-H.L., A.K.P. and S.G.S. designed and implemented the experimental set-up. Y.-J.C. conducted theoretical modelling, supported by S.P. and supervised by R.S. M.S., H.T. and Y.-J.C. wrote the manuscript, with input from all authors. The project was supervised by S.R.L.

Corresponding authors

Correspondence to Mazyar Sabbar or Stephen R. Leone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1471 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabbar, M., Timmers, H., Chen, YJ. et al. State-resolved attosecond reversible and irreversible dynamics in strong optical fields. Nature Phys 13, 472–478 (2017). https://doi.org/10.1038/nphys4027

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing