Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering


Synthetic magnetism has been used to control charge neutral excitations for applications ranging from classical beam steering to quantum simulation. In optomechanics, radiation-pressure-induced parametric coupling between optical (photon) and mechanical (phonon) excitations may be used to break time-reversal symmetry, providing the prerequisite for synthetic magnetism. Here we design and fabricate a silicon optomechanical circuit with both optical and mechanical connectivity between two optomechanical cavities. Driving the two cavities with phase-correlated laser light results in a synthetic magnetic flux, which, in combination with dissipative coupling to the mechanical bath, leads to non-reciprocal transport of photons with 35 dB of isolation. Additionally, optical pumping with blue-detuned light manifests as a particle non-conserving interaction between photons and phonons, resulting in directional optical amplification of 12 dB in the isolator through-direction. These results suggest the possibility of using optomechanical circuits to create a more general class of non-reciprocal optical devices, and further, to enable new topological phases for both light and sound on a microchip.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthetic magnetic field in an optomechanical cavity system.
Figure 2: Silicon optomechanical crystal circuit.
Figure 3: Measurement of optical non-reciprocity.
Figure 4: Synthetic magnetic field with a single-mechanical cavity.


  1. 1

    Dalibard, J., Gerbier, F., Juzelinas, G. & Öhberg, P. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    ADS  Article  Google Scholar 

  2. 2

    Koch, J., Houck, A., Hur, K. L. & Girvin, S. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Sliwa, K. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

    Google Scholar 

  4. 4

    Roushan, P. et al. Chiral groundstate currents of interacting photons in a synthetic magnetic field. Nat. Phys. (2016).

  5. 5

    Umucalılar, R. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    ADS  Article  Google Scholar 

  6. 6

    Hafezi, M., Demler, E., Lukin, M. & Taylor, J. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  7. 7

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Rechtsman, M. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Tzuang, L., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Nonreciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    ADS  Article  Google Scholar 

  10. 10

    Lin, Y.-J., Compton, R., Jimnez-Garca, K., Porto, J. & Spielman, I. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Ray, M. W., Ruokokoski, E., Kandel, S., Möttönen, M. & Hall, D. S. Observation of Dirac monopoles in a synthetic magnetic field. Nature 505, 657–660 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Lu, L., Joannopoulos, J. & Soljai, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Rosenberg, J., Lin, Q. & Painter, O. Static and dynamic wavelength routing via the gradient optical force. Nat. Photon. 3, 478–483 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Manipatruni, S., Robinson, J. T. & Lipson, M. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett. 102, 213903 (2009).

    ADS  Article  Google Scholar 

  16. 16

    Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Exp. 20, 7672–7684 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Habraken, S. J. M., Stannigel, K., Lukin, M. D., Zoller, P. & Rabl, P. Continuous mode cooling and phonon routers for phononic quantum networks. New J. Phys. 14, 115004 (2012).

    ADS  MathSciNet  Google Scholar 

  18. 18

    Wang, Z., Shi, L., Liu, Y., Xu, X. & Zhang, X. Optical nonreciprocity in asymmetric optomechanical couplers. Sci. Rep. 5, 8657 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  20. 20

    Schmidt, M., Keßler, S., Peano, V., Painter, O. & Marquardt, F. Optomechanical creation of magnetic fields for photons on a lattice. Optica 2, 635–641 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489–496 (2016).

    ADS  Article  Google Scholar 

  22. 22

    Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  23. 23

    Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    ADS  Article  Google Scholar 

  24. 24

    Ruesink, F., Miri, M.-A., Alú, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    ADS  Article  Google Scholar 

  25. 25

    Metelmann, A. & Clerk, A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

    Google Scholar 

  26. 26

    Abdo, B., Sliwa, K., Frunzio, L. & Devoret, M. Directional amplification with a Josephson circuit. Phys. Rev. X 3, 031001 (2013).

    Google Scholar 

  27. 27

    Abdo, B. et al. Josephson directional amplifier for quantum measurement of superconducting circuits. Phys. Rev. Lett. 112, 167701 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Peano, V., Houde, M., Brendel, C., Marquardt, F. & Clerk, A. Topological phase transitions and chiral inelastic transport induced by the squeezing of light. Nat. Commun. 7, 10779 (2016).

    ADS  Article  Google Scholar 

  29. 29

    Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and travelling wave amplifiers. Phys. Rev. X 6, 041026 (2016).

    Google Scholar 

  30. 30

    Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    ADS  Article  Google Scholar 

  31. 31

    Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    ADS  Article  Google Scholar 

  32. 32

    Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33

    Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34

    Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    ADS  Article  Google Scholar 

  35. 35

    Aharanov, Y. & Bohm, D. Signigicance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36

    Deák, L. & Fülöp, T. Reciprocity in quantum, electromagnetic and other wave scattering. Ann. Phys. 327, 1050–1077 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    ADS  Article  Google Scholar 

  38. 38

    Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P. & Laude, V. Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106, 074912 (2009).

    ADS  Article  Google Scholar 

  39. 39

    Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014).

    ADS  Article  Google Scholar 

  40. 40

    Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Exp. 18, 14926–14943 (2010).

    ADS  Article  Google Scholar 

  41. 41

    Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photon. 6, 56–61 (2012).

    ADS  Article  Google Scholar 

  42. 42

    Gröblacher, S., Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett. 108, 181104 (2013).

    ADS  Article  Google Scholar 

  43. 43

    Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    ADS  Article  Google Scholar 

  44. 44

    Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    ADS  Article  Google Scholar 

  45. 45

    Walter, S. & Marquardt, F. Classical dynamical gauge fields in optomechanics. New J. Phys. 18, 113029 (2016).

    ADS  Article  Google Scholar 

Download references


The authors would like to thank M. Roukes for the use of his atomic force microscope in the nano-oxidation tuning of the cavities. This work was supported by the AFOSR-MURI Quantum Photonic Matter, the ARO-MURI Quantum Opto-Mechanics with Atoms and Nanostructured Diamond (grant N00014-15-1-2761), the University of Chicago Quantum Engineering Program (A.A.C., A.M.), the ERC Starting Grant OPTOMECH (F.M.), the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (grant PHY-1125565) with support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech.

Author information




K.F., F.M., A.M., A.A.C. and O.P. came up with the concept. K.F., O.P. and J.L. planned the experiment. K.F., J.L. and M.H.M. performed the device design and fabrication. K.F. and J.L. performed the measurements. K.F., J.L., A.M., A.A.C. and O.P. analysed the data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Oskar Painter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1178 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, K., Luo, J., Metelmann, A. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nature Phys 13, 465–471 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing