Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New frontiers for quantum gases of polar molecules

Abstract

Compared to atoms, molecules possess additional degrees of freedom that can be exploited in fundamental tests, ultracold chemistry, and engineering new quantum phases in many-body systems. Here, we review the recent progress in creating and manipulating ultracold bialkali molecules to study quantum gases of polar molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A survey of the applications of ultracold molecules.
Figure 2: Creating and manipulating ultracold bialkali molecules.
Figure 3: Controlling chemical reactions with optical lattices.
Figure 4: Recent experiments with polar molecules in optical lattices.

References

  1. 1

    Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulation with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  Google Scholar 

  2. 2

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004).

    Article  ADS  Google Scholar 

  4. 4

    Zwierlein, M. W. et al. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004).

    Article  ADS  Google Scholar 

  5. 5

    Bartenstein, M. et al. Crossover from a molecular Bose–Einstein condensate to a degenerate fermi gas. Phys. Rev. Lett. 92, 120401 (2004).

    Article  ADS  Google Scholar 

  6. 6

    Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Lu, M., Youn, S. H. & Lev, B. L. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics. Phys. Rev. Lett. 104, 063001 (2010).

    Article  ADS  Google Scholar 

  8. 8

    Aikawa, K. Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).

    Article  ADS  Google Scholar 

  9. 9

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  10. 10

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  11. 11

    Löw, R. et al. An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B 45, 113001 (2012).

    Article  ADS  Google Scholar 

  12. 12

    Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

    Article  ADS  Google Scholar 

  13. 13

    Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  Google Scholar 

  14. 14

    Yao, N. Y. et al. Many-body localization in dipolar systems. Phys. Rev. Lett. 113, 243002 (2014).

    Article  ADS  Google Scholar 

  15. 15

    Baranov, M. A., Mar’enko, M. S., Rychkov, V. S. & Shlyapnikov, G. V. Superfluid pairing in a polarized dipolar Fermi gas. Phys. Rev. A 66, 013606 (2002).

    Article  ADS  Google Scholar 

  16. 16

    Cooper, N. R. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).

    Article  ADS  Google Scholar 

  17. 17

    Pikovski, A., Klawunn, M., Shlyapnikov, G. V. & Santos, L. Interlayer superfluidity in bilayer systems of fermionic polar molecules. Phys. Rev. Lett. 105, 215302 (2010).

    Article  ADS  Google Scholar 

  18. 18

    Kuns, K. A., Rey, A. M. & Gorshkov, A. V. d-wave superfluidity in optical lattices of ultracold polar molecules. Phys. Rev. A 84, 063639 (2011).

    Article  ADS  Google Scholar 

  19. 19

    Knap, M., Berg, E., Ganahl, M. & Demler, E. Clustered Wigner-crystal phases of cold polar molecules in arrays of one-dimensional tubes. Phys. Rev. B 86, 064501 (2012).

    Article  ADS  Google Scholar 

  20. 20

    Yao, N. Y. et al. Realizing fractional chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013).

    Article  ADS  Google Scholar 

  21. 21

    Syzranov, S. V., Wall, M. L., Gurarie, V. & Rey, A. M. Spin–orbital dynamics in a system of polar molecules. Nat. Commun. 5, 5391 (2014).

    Article  ADS  Google Scholar 

  22. 22

    Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  ADS  Google Scholar 

  23. 23

    Hazzard, K. R. A., Manmana, S. R., Foss-Feig, M. & Rey, A. M. Far-from-equilibrium quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 110, 075301 (2013).

    Article  ADS  Google Scholar 

  24. 24

    Phillips, W. D. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  Google Scholar 

  25. 25

    Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    Article  ADS  Google Scholar 

  26. 26

    Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

    Article  ADS  Google Scholar 

  27. 27

    Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).

    Article  ADS  Google Scholar 

  28. 28

    Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    Article  ADS  Google Scholar 

  29. 29

    Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & Demille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  Google Scholar 

  30. 30

    Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).

    Article  ADS  Google Scholar 

  31. 31

    Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    Article  ADS  Google Scholar 

  32. 32

    Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    Article  Google Scholar 

  33. 33

    van de Meerakker, S. Y. T., Bethlem, H. L. & Meijer, G. Taming molecular beams. Nat. Phys. 4, 595–602 (2008).

    Article  Google Scholar 

  34. 34

    Stuhl, B. K. et al. Evaporative cooling of the dipolar hydroxyl radical. Nature 492, 396–400 (2012).

    Article  ADS  Google Scholar 

  35. 35

    Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).

    Article  ADS  Google Scholar 

  36. 36

    Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  37. 37

    Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010).

    Article  Google Scholar 

  38. 38

    Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    Article  ADS  Google Scholar 

  39. 39

    Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    Article  ADS  Google Scholar 

  40. 40

    Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article  ADS  Google Scholar 

  41. 41

    Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    Article  ADS  Google Scholar 

  42. 42

    Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015).

    Article  ADS  Google Scholar 

  43. 43

    Donley, E. A., Claussen, N. R., Thompson, S. T. & Wieman, C. E. Atom-molecule coherence in a Bose–Einstein condensate. Nature 417, 529–533 (2002).

    Article  ADS  Google Scholar 

  44. 44

    Jochim, S. et al. Bose–Einstein condensation of molecules. Science 302, 2101–2103 (2003).

    Article  ADS  Google Scholar 

  45. 45

    Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    Article  ADS  Google Scholar 

  46. 46

    Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    Article  ADS  Google Scholar 

  47. 47

    Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

    Article  ADS  Google Scholar 

  48. 48

    Lang, F., Winkler, K., Strauss, C., Grimm, R. & Denschlag, J. H. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).

    Article  ADS  Google Scholar 

  49. 49

    Zelevinsky, T., Kotochigova, S. & Ye, J. Precision test of mass ratio variations with lattice-confined ultracold molecules. Phys. Rev. Lett. 100, 043201 (2008).

    Article  ADS  Google Scholar 

  50. 50

    Reinaudi, G., Osborn, C. B., McDonald, M., Kotochigova, S. & Zelevinsky, T. Optical production of stable ultracold 88Sr2 molecules. Phys. Rev. Lett. 109, 115303 (2012).

    Article  ADS  Google Scholar 

  51. 51

    Stellmer, S., Pasquiou, B., Grimm, R. & Schreck, F. Creation of ultracold Sr2 molecules in the electronic ground state. Phys. Rev. Lett. 109, 115302 (2012).

    Article  ADS  Google Scholar 

  52. 52

    Ospelkaus, S. et al. Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nat. Phys. 4, 622–626 (2008).

    Article  Google Scholar 

  53. 53

    Aikawa, K. et al. Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb. New J. Phys. 11, 055035 (2009).

    Article  ADS  Google Scholar 

  54. 54

    Gregory, P. D. et al. A simple, versatile laser system for the creation of ultracold ground state molecules. New J. Phys. 17, 055006 (2015).

    Article  ADS  Google Scholar 

  55. 55

    Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    Article  ADS  Google Scholar 

  56. 56

    Aldegunde, J., Rivington, B. A., Żuchowski, P. S. & Hutson, J. M. Hyperfine energy levels of alkali-metal dimers: ground-state polar molecules in electric and magnetic fields. Phys. Rev. A 78, 033434 (2008).

    Article  ADS  Google Scholar 

  57. 57

    Will, S. A., Park, J. W., Yan, Z. Z., Loh, H. & Zwierlein, M. W. Coherent microwave control of ultracold 23Na40K molecules. Phys. Rev. Lett. 116, 225306 (2016).

    Article  ADS  Google Scholar 

  58. 58

    Gregory, P. D., Aldegunde, J., Hutson, J. M. & Cornish, S. L. Controlling the rotational and hyperfine state of ultracold 87Rb133Cs molecules. Phys. Rev. A 94, 041403(R) (2016).

    Article  ADS  Google Scholar 

  59. 59

    Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of trapped ultracold 23Na40K molecules. Preprint at http://arxiv.org/abs/1606.04184 (2016).

  60. 60

    Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    Article  ADS  Google Scholar 

  61. 61

    Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  62. 62

    Kotochigova, S. & DeMille, D. Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic polar molecules. Phys. Rev. A 82, 063421 (2010).

    Article  ADS  Google Scholar 

  63. 63

    Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    Article  ADS  Google Scholar 

  64. 64

    Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    Article  ADS  Google Scholar 

  65. 65

    Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    Article  ADS  Google Scholar 

  66. 66

    de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

    Article  Google Scholar 

  67. 67

    Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).

    Article  ADS  Google Scholar 

  68. 68

    Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    Article  ADS  Google Scholar 

  69. 69

    Micheli, A., Pupillo, G., Büchler, H. P. & Zoller, P. Cold polar molecules in two-dimensional traps: tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007).

    Article  ADS  Google Scholar 

  70. 70

    Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329–1331 (2008).

    Article  ADS  Google Scholar 

  71. 71

    Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  ADS  Google Scholar 

  72. 72

    Zhu, B. et al. Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect. Phys. Rev. Lett. 112, 070404 (2014).

    Article  ADS  Google Scholar 

  73. 73

    Croft, J. F. E. & Bohn, J. L. Long-lived complexes and chaos in ultracold molecular collisions. Phys. Rev. A 89, 012714 (2014).

    Article  ADS  Google Scholar 

  74. 74

    Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    Article  ADS  Google Scholar 

  75. 75

    Barnett, R., Petrov, D., Lukin, M. & Demler, E. Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006).

    Article  ADS  Google Scholar 

  76. 76

    Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  ADS  Google Scholar 

  77. 77

    Kaden, R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    Article  ADS  Google Scholar 

  78. 78

    de Paz, A. et al. Nonequilibrium quantum magnetism in a dipolar lattice gas. Phys. Rev. Lett. 111, 185305 (2013).

    Article  ADS  Google Scholar 

  79. 79

    Damski, B. et al. Creation of a dipolar superfluid in optical lattices. Phys. Rev. Lett. 90, 110401 (2003).

    Article  ADS  Google Scholar 

  80. 80

    Freericks, J. K. et al. Improving the efficiency of ultracold dipolar molecule formation by first loading onto an optical lattice. Phys. Rev. A 81, 011605 (2010).

    Article  ADS  Google Scholar 

  81. 81

    Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article  ADS  Google Scholar 

  82. 82

    Volz, T. et al. Preparation of a quantum state with one molecule at each site of an optical lattice. Nat. Phys. 2, 692–695 (2006).

    Article  Google Scholar 

  83. 83

    Covey, J. P. et al. Doublon dynamics and polar molecule production in an optical lattice. Nat. Commun. 7, 11279 (2016).

    Article  ADS  Google Scholar 

  84. 84

    Reichsöllner, L., Schindewolf, A., Takekoshi, T., Grimm, R. & Nägerl, H.-C. Quantum engineering of a low-entropy gas of heteronuclear bosonic molecules in an optical lattice. Preprint at http://arxiv.org/abs/1607.06536 (2016).

  85. 85

    Haller, E. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nat. Phys. 11, 738–742 (2015).

    Article  Google Scholar 

  86. 86

    Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).

    Article  ADS  Google Scholar 

  87. 87

    Parsons, M. F. et al. Site-resolved imaging of fermionic 6Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).

    Article  ADS  Google Scholar 

  88. 88

    Omran, A. et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases. Phys. Rev. Lett. 115, 263001 (2015).

    Article  ADS  Google Scholar 

  89. 89

    Gröbner, M. et al. A new quantum gas apparatus for ultracold mixtures of K and Cs and KCs ground-state molecules. J. Mod. Opt. 63, 1829–1839 (2016).

    Article  ADS  Google Scholar 

  90. 90

    Hutzler, N. R., Liu, L. R., Yu, Y. & Ni, K.-K. Eliminating light shifts in single-atom optical traps. Preprint at http://arxiv.org/abs/1605.09422 (2016).

  91. 91

    Żuchowski, P. S., Aldegunde, J. & Hutson, J. M. Ultracold RbSr molecules can be formed by magnetoassociation. Phys. Rev. Lett. 105, 153201 (2010).

    Article  ADS  Google Scholar 

  92. 92

    Pasquiou, B. et al. Quantum degenerate mixtures of strontium and rubidium atoms. Phys. Rev. A 88, 023601 (2013).

    Article  ADS  Google Scholar 

  93. 93

    Dowd, W. et al. Magnetic field dependent interactions in an ultracold Li-Yb(3P2) mixture. New J. Phys. 17, 055007 (2015).

    Article  ADS  Google Scholar 

  94. 94

    Kemp, S. L. et al. Production and characterization of a dual species magneto-optical trap of cesium and ytterbium. Rev. Sci. Instrum. 87, 023105 (2016).

    Article  ADS  Google Scholar 

  95. 95

    Baier, S. et al. Extended Bose–Hubbard models with ultracold magnetic atoms. Science 352, 201–205 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. 96

    Yi, S., Li, T. & Sun, C. P. Novel quantum phases of dipolar Bose gases in optical lattices. Phys. Rev. Lett. 98, 260405 (2007).

    Article  ADS  Google Scholar 

  97. 97

    Pollet, L., Picon, J. D., Büchler, H. P. & Troyer, M. Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104, 125302 (2010).

    Article  ADS  Google Scholar 

  98. 98

    Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2d optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article  ADS  Google Scholar 

  99. 99

    Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    Article  ADS  Google Scholar 

  100. 100

    Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macro-droplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  101. 101

    Li, Y. & Wu, C. Unconventional symmetries of Fermi liquid and Cooper pairing properties with electric and magnetic dipolar fermions. J. Phys. Condens. Matter 26, 493203 (2014).

    Article  Google Scholar 

  102. 102

    DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  Google Scholar 

  103. 103

    Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  104. 104

    Kozlov, M. G. & Labzowsky, L. N. Parity violation effects in diatomics. J. Phys. B 28, 1933–1961 (1995).

    ADS  Google Scholar 

  105. 105

    Hudson, E. R., Lewandowski, H. J., Sawyer, B. C. & Ye, J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys. Rev. Lett. 96, 143004 (2006).

    Article  ADS  Google Scholar 

  106. 106

    Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).

    Article  ADS  Google Scholar 

  107. 107

    Loh, H. et al. Precision spectroscopy of polarized molecules in an ion trap. Science 342, 1220–1222 (2013).

    Article  ADS  Google Scholar 

  108. 108

    The ACME Collaboration, Baron, J. et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Deborah. S. Jin, who passed away on 15 September 2016 after a courageous battle with cancer. Debbie was a beloved friend, colleague, and teacher. She demonstrated an unparalleled combination of scientific vision, creativity, and detail-oriented experimental excellence. Among her many outstanding accomplishments, Debbie was a guiding force on the JILA KRb polar molecule collaboration for the past dozen years. Her vision is clearly manifest in the legacy of our work. Her ideas and sense of direction for our experiment will continue to influence our work for many years to come. Even when we progress sufficiently far on the experiment beyond anything we could have imagined during her time, we will continue to feel inspired by her creativity and enthusiasm. We, and the entire physics community, will deeply miss her.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moses, S., Covey, J., Miecnikowski, M. et al. New frontiers for quantum gases of polar molecules. Nature Phys 13, 13–20 (2017). https://doi.org/10.1038/nphys3985

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing