Attosecond correlation dynamics


Photoemission of an electron is commonly treated as a one-particle phenomenon. With attosecond streaking spectroscopy we observe the breakdown of this single active-electron approximation by recording up to six attoseconds retardation of the dislodged photoelectron due to electronic correlations. We recorded the photon-energy-dependent emission timing of electrons, released from the helium ground state by an extreme-ultraviolet photon, either leaving the ion in its ground state or exciting it into a shake-up state. We identify an optical field-driven d.c. Stark shift of charge-asymmetric ionic states formed after the entangled photoemission as a key contribution to the observed correlation time shift. These findings enable a complete wavepacket reconstruction and are universal for all polarized initial and final states. Sub-attosecond agreement with quantum mechanical ab initio modelling allows us to determine the absolute zero of time in the photoelectric effect to a precision better than 1/25th of the atomic unit of time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Attosecond streaking spectroscopy of shake-up states in helium.
Figure 2: Absolute timing of the photoelectric (PE) effect in helium.
Figure 3: The d.c. Stark effect at optical frequencies.
Figure 4: Effective dipole moment for the n = 2 shake-up state and relative group delay dispersion of the correlation time.


  1. 1

    Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905).

    Article  Google Scholar 

  2. 2

    Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS  Article  Google Scholar 

  5. 5

    Sabbar, M. et al. Resonance effects in photoemission time delays. Phys. Rev. Lett. 115, 133001 (2015).

    ADS  Article  Google Scholar 

  6. 6

    Palatchi, C. et al. Atomic delay in helium, neon, argon and krypton. J. Phys. B 47, 245003 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Eisenbud, L. The Formal Properties of Nuclear Collisions (Princeton Univ., 1948).

    Google Scholar 

  9. 9

    Smith, F. T. Lifetime matrix in collision theory. Phys. Rev. 118, 349–356 (1960).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10

    Nussenzveig, H. M. Time delay in quantum scattering. Phys. Rev. D 6, 1534–1542 (1972).

    ADS  Article  Google Scholar 

  11. 11

    de Carvalho, C. A. A. & Nussenzveig, H. M. Time delay. Phys. Rep. 364, 83–174 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Sassoli de Bianchi, M. Time-delay of classical and quantum scattering processes: a conceptual overview and a general definition. Centr. Eur. J. Phys. 10, 282–319 (2012).

    ADS  Google Scholar 

  13. 13

    Tew, D. P., Klopper, W. & Helgaker, T. Electron correlation: the many-body problem at the heart of chemistry. J. Comput. Chem. 28, 1307–1320 (2007).

    Article  Google Scholar 

  14. 14

    Fulde, P. Electron Correlations in Molecules and Solids (Springer Science & Business Media, 2012).

    Google Scholar 

  15. 15

    Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1997).

    Google Scholar 

  16. 16

    Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1994).

    Google Scholar 

  17. 17

    Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963).

    ADS  Article  Google Scholar 

  18. 18

    Pazourek, R., Feist, J., Nagele, S. & Burgdörfer, J. Attosecond streaking of correlated two-electron transitions in helium. Phys. Rev. Lett. 108, 163001 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Dahlström, J. M., L’Huillier, A. & Maquet, A. Introduction to attosecond delays in photoionization. J. Phys. B 45, 183001 (2012).

    Article  Google Scholar 

  20. 20

    Nagele, S., Pazourek, R., Feist, J. & Burgdörfer, J. Time shifts in photoemission from a fully correlated two-electron model system. Phys. Rev. A 85, 033401 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Kheifets, A. S. Time delay in valence-shell photoionization of noble-gas atoms. Phys. Rev. A 87, 063404 (2013).

    ADS  Article  Google Scholar 

  22. 22

    Zhang, C.-H. & Thumm, U. Streaking and Wigner time delays in photoemission from atoms and surfaces. Phys. Rev. A 84, 033401 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Sukiasyan, S., Ishikawa, K. L. & Ivanov, M. Attosecond cascades and time delays in one-electron photoionization. Phys. Rev. A 86, 033423 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Moore, L. R., Lysaght, M. A., Parker, J. S., van der Hart, H. W. & Taylor, K. T. Time delay between photoemission from the 2p and 2s subshells of neon. Phys. Rev. A 84, 061404 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Baggesen, J. C. & Madsen, L. Atomic and molecular phases through attosecond streaking. Phys. Rev. A 83, 021403(R) (2011).

    ADS  Article  Google Scholar 

  26. 26

    Kheifets, A. S., Saha, S., Deshmukh, P. C., Keating, D. A. & Manson, S. T. Dipole phase and photoelectron group delay in inner-shell photoionization. Phys. Rev. A 92, 063422 (2015).

    ADS  Article  Google Scholar 

  27. 27

    Zhang, C.-H. & Thumm, U. Electron-ion interaction effects in attosecond time-resolved photoelectron spectra. Phys. Rev. A 82, 043405 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Baggesen, J. C. & Madsen, L. B. Polarization effects in attosecond photoelectron spectroscopy. Phys. Rev. Lett. 104, 043602 (2010).

    ADS  Article  Google Scholar 

  29. 29

    Nagele, S. et al. Time-resolved photoemission by attosecond streaking: extraction of time information. J. Phys. B 44, 081001 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Heimann, P. A. et al. Helium and neon photoelectron satellites at threshold. Phys. Rev. A 34, 3782–3791 (1986).

    ADS  Article  Google Scholar 

  31. 31

    Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    ADS  Article  Google Scholar 

  32. 32

    Yakovlev, V. S., Gagnon, J., Karpowicz, N. & Krausz, F. Attosecond streaking enables the measurement of quantum phase. Phys. Rev. Lett. 105, 073001 (2010).

    ADS  Article  Google Scholar 

  33. 33

    Feist, J. et al. Nonsequential two-photon double ionization of helium. Phys. Rev. A 77, 043420 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Schneider, B. I. et al. Quantum Dynamic Imaging 149–208 (Springer Science & Business Media, 2011).

    Google Scholar 

  35. 35

    Ivanov, M. & Smirnova, O. How accurate is the attosecond streak camera? Phys. Rev. Lett. 107, 213605 (2011).

    ADS  Article  Google Scholar 

  36. 36

    Palacios, A., McCurdy, C. W. & Rescigno, T. N. Extracting amplitudes for single and double ionization from a time-dependent wave packet. Phys. Rev. A 76, 043420 (2007).

    ADS  Article  Google Scholar 

  37. 37

    Woodruff, P. R. & Samson, J. A. R. Measurements of partial cross sections and autoionization in the photoionization of helium to He+ (N = 2). Phys. Rev. A 25, 848–856 (1982).

    ADS  Article  Google Scholar 

  38. 38

    Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. 68, 3277–3295 (1997).

    ADS  Article  Google Scholar 

  39. 39

    Vampa, G. & Villeneuve, D. M. High-harmonic generation: to the extreme. Nat. Phys. 11, 529–530 (2015).

    Article  Google Scholar 

  40. 40

    Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    ADS  Article  Google Scholar 

  41. 41

    Ghimire, S. et al. Strong-field and attosecond physics in solids. J. Phys. B 47, 204030 (2014).

    ADS  Article  Google Scholar 

  42. 42

    Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    ADS  Article  Google Scholar 

  43. 43

    Ramachandran, P. & Varoquaux, G. Mayavi: 3D visualization of scientific data. Comput. Sci. Eng. 13, 40–51 (2011).

    Article  Google Scholar 

  44. 44

    Schweinberger, W. et al. Waveform-controlled near-single-cycle milli-joule laser pulses generate sub-10 nm extreme ultraviolet continua. Opt. Lett. 37, 3573–3575 (2012).

    ADS  Article  Google Scholar 

  45. 45

    Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Article  Google Scholar 

  46. 46

    Schafer, K. & Kulander, K. High harmonic generation from ultrafast pump lasers. Phys. Rev. Lett. 78, 638–641 (1997).

    ADS  Article  Google Scholar 

  47. 47

    Hofstetter, M. et al. Lanthanum–molybdenum multilayer mirrors for attosecond pulses between 80 and 130 eV. New J. Phys. 13, 063038 (2011).

    ADS  Article  Google Scholar 

  48. 48

    Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003).

    ADS  Article  Google Scholar 

  49. 49

    Fiess, M. et al. Versatile apparatus for attosecond metrology and spectroscopy. Rev. Sci. 81, 093103 (2010).

    ADS  Article  Google Scholar 

  50. 50

    Becker, U. & Shirley, D. A. VUV and Soft X-ray Photoionization (Springer Science & Business Media, 2012).

    Google Scholar 

Download references


We acknowledge insightful comments and generous infrastructural support from F. Krausz. This work was supported by the Max Planck Society, the Deutsche Forschungsgemeinschaft Cluster of Excellence: Munich Centre for Advanced Photonics (, the Austrian Science Foundation project NEXTLITE (F049 and P23359-N16) and LASERLAB-EUROPE (grant agreement no. 654148, European Union’s Horizon 2020 research and innovation programme). J.F. acknowledges funding by the European Research Council (ERC-2011-AdG Proposal 290981). R.K. acknowledges a Consolidator Grant from the European Research Council (ERC-2014-CoG AEDMOS). M.S. was supported by a Marie Curie International Outgoing Fellowship (FP7-PEOPLE-2011-IOF). The computational results presented have been achieved (in part) using the Vienna Scientific Cluster (VSC).

Author information




Experimental studies and analysis of experimental and theoretical signatures were carried out by M.O., F.S., V.S., A.S., T.L. and M.S. Theory and modelling were performed by R.P., supported by S.N. and J.F., and supervised by J.B. Customized XUV optics were provided by A.G. The manuscript was written by M.O., F.S. and M.S. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to M. Ossiander or M. Schultze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2198 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ossiander, M., Siegrist, F., Shirvanyan, V. et al. Attosecond correlation dynamics. Nature Phys 13, 280–285 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing