Abstract

Many properties of the atomic nucleus, such as vibrations, rotations and incompressibility, can be interpreted as due to a two-component quantum liquid of protons and neutrons. Electron scattering measurements on stable nuclei demonstrate that their central densities are saturated, as for liquid drops. In exotic nuclei near the limits of mass and charge, with large imbalances in their proton and neutron numbers, the possibility of a depleted central density, or a ‘bubble’ structure, has been discussed in a recurrent manner since the 1970s. Here we report first experimental evidence that points to a depletion of the central density of protons in the short-lived nucleus 34Si. The proton-to-neutron density asymmetry in 34Si offers the possibility to place constraints on the density and isospin dependence of the spin–orbit force—on which nuclear models have disagreed for decades—and on its stabilizing effect towards limits of nuclear existence.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Topological organic chemistry. Polyhedranes and prismanes. J. Org. Chem. 30, 1361–1364 (1965).

  2. 2.

    On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys. J. 1, 121–146 (1954).

  3. 3.

    & The Hoyle state in 12C. Prog. Part. Nucl. Phys. 78, 1–23 (2014).

  4. 4.

    , , & How atomic nuclei cluster. Nature 487, 341–344 (2012).

  5. 5.

    in Nuclear Structure, Trends in Nuclear Physics, 100 Years Later (eds Nifenecker, H., Blaizot, J.-P., Bertsch, G. F., Weise, W. & David, F.) 25–122 (Elsevier, 1998).

  6. 6.

    Electron scattering and nuclear structure. Rev. Mod. Phys. 28, 214–253 (1956).

  7. 7.

    & Possible bubble nuclei 36Ar and 200Hg. Phys. Lett. B 46, 291–295 (1973).

  8. 8.

    , & Generalized shells in nuclei: Hartree-Fock calculations for bubble nuclei. Nucl. Phys. A 216, 250–270 (1973).

  9. 9.

    , , & Detecting bubbles in exotic nuclei. Nucl. Phys. A 800, 37–46 (2008).

  10. 10.

    et al. Nuclear ‘bubble’ structure in 34Si. Phys. Rev. C 79, 034318 (2009).

  11. 11.

    et al. Shell structure of superheavy nuclei in self-consistent mean-field models. Phys. Rev. C 60, 034304 (1999).

  12. 12.

    , , & Bubbles and semi-bubbles as a new kind of superheavy nuclei. Nucl. Phys. A 716, 55–86 (2003).

  13. 13.

    et al. Is the shell-model concept relevant for the nuclear interior? Phys. Rev. Lett. 49, 978–981 (1982).

  14. 14.

    , , & Pseudospin-orbit splitting and its consequences for the central depression in nuclear density. Phys. Rev. C 93, 054312 (2016).

  15. 15.

    , , , & Pseudospin-orbit splitting and its consequences for the central depression in nuclear density. Phys. Rev. C 91, 017302 (2015).

  16. 16.

    & Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei. Phys. Rev. C 71, 024308 (2005).

  17. 17.

    et al. Beyond-mean-field study of the possible ‘bubble’ structure of 34Si. Phys. Rev. C 86, 014310 (2012).

  18. 18.

    et al. The mass of 35P and spin-parity assignments for excited 35P states. Phys. Lett. B 156, 155–158 (1985).

  19. 19.

    et al. Spectroscopy of 35P using the one-proton knockout reaction. Phys. Rev. C 93, 034333 (2016).

  20. 20.

    et al. The performance of the gamma-ray energy tracking In-beam nuclear array GRETINA. Nucl. Instr. Meth. A 709, 44–55 (2013).

  21. 21.

    et al. Geant4: a simulation toolkit. Nucl. Instr. Methods A 506, 250–303 (2003).

  22. 22.

    et al. Intruder configurations in the A = 33 isobars: 33Mg and 33Al. Phys. Rev. Lett. 101, 142504 (2008).

  23. 23.

    et al. Single-neutron knockout from 34,35Si and 37S. Phys. Rev. C 65, 034318 (2002).

  24. 24.

    et al. Experimental study of the two-body spin-orbit force in nuclei. Phys. Rev. Lett. 112, 042502 (2014).

  25. 25.

    et al. Quadrupole collectivity in 32,34,36,38Si and the N = 20 shell closure. Phys. Rev. Lett. 80, 2081–2084 (1998).

  26. 26.

    et al. Unveiling the intruder deformed 02+ state in 34Si. Phys. Rev. Lett. 109, 092503 (2012).

  27. 27.

    et al. Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei. Phys. Rev. C 83, 064323 (2011).

  28. 28.

    & Evolution of the N = 28 shell closure: a test bench for nuclear forces. Phys. Scr. 152, 014003 (2013).

  29. 29.

    & Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61, 602–673 (2008).

  30. 30.

    , , & Shell effects in nuclei near the neutron-drip line. Phys. Rev. Lett. 72, 1431–1434 (1994).

  31. 31.

    , & Isospin dependence of the spin-orbit force and effective nuclear potentials. Phys. Rev. Lett. 74, 3744–3747 (1995).

  32. 32.

    et al. Reduction of the spin-orbit potential in light drip-line nuclei. Phys. Lett. B 418, 7–12 (1998).

  33. 33.

    , & Nuclear energy density functional from chiral two-nucleon and three-nucleon interactions. Eur. Phys. J. A 47, 128–138 (2011).

  34. 34.

    & Nuclear effective forces and isotope shifts. Nucl. Phys. A 584, 467–488 (1995).

  35. 35.

    , & Spin-orbit splitting in low-j neutron orbits and proton densities in the nuclear interior. Phys. Rev. C 69, 021301 (2004).

  36. 36.

    et al. Direct evidence for a new giant resonance at 80A−1/3 MeV in the lead region. Phys. Rev. Lett. 38, 676–679 (1977).

  37. 37.

    et al. Isoscalar breathing-mode state in 144Sm and 208Pb. Phys. Rev. Lett. 39, 1188–1191 (1977).

  38. 38.

    et al. Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni. Phys. Rev. Lett. 113, 032504 (2014).

  39. 39.

    et al. Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 044306 (2008).

  40. 40.

    et al. Single-particle structure of silicon isotopes approaching 42Si. Phys. Rev. C 90, 034301 (2014).

  41. 41.

    & Systematics of intermediate-energy single-nucleon removal cross sections. Phys. Rev. C 90, 057602 (2014).

  42. 42.

    et al. Independent particle motion and correlations in fermion systems. Rev. Mod. Phys. 69, 981–992 (1997).

  43. 43.

    Role of long-range correlations in the quenching of spectroscopic factors. Phys. Rev. Lett. 103, 202502 (2009).

  44. 44.

    & Self-consistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377–496 (2004).

  45. 45.

    , , & Nonobservable nature of the nuclear shell structure: meaning, illustrations, and consequences. Phys. Rev. C 92, 034313 (2015).

  46. 46.

    & Are occupation numbers observable? Phys. Lett. B 531, 203–208 (2002).

  47. 47.

    et al. Test of sum rules in nucleon transfer reactions. Phys. Rev. Lett. 108, 022501 (2012).

  48. 48.

    Le Noyau-Bulle de 34Si: un Outil Experimental pour Étudier L’interaction Spin-Orbite PhD thesis, Univ. Paris XI (2015);

Download references

Acknowledgements

This work is supported by the National Science Foundation (NSF) under Grant Nos. PHY-1102511 and PHY-1306297, the OTKA Contract No. K100835, and by the Institut Universitaire de France. GRETINA was funded by the US DOE—Office of Science. Operation of the array at NSCL is supported by the NSF under Cooperative Agreement PHY-1102511 (NSCL) and the DOE under grant DE-AC02-05CH11231 (LBNL). J.A.T. acknowledges support of the Science and Technology Facility Council (UK) grant ST/L005743.

Author information

Affiliations

  1. Institut de Physique Nucléaire, IN2P3-CNRS, F-91406 Orsay Cedex, France

    • A. Mutschler
    • , E. Khan
    •  & M. Vandebrouck
  2. Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, B. P. 55027, F-14076 Caen Cedex 5, France

    • A. Mutschler
    • , A. Lemasson
    • , O. Sorlin
    • , A. Lepailleur
    •  & T. Roger
  3. National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

    • A. Lemasson
    • , F. Recchia
    • , D. Weisshaar
    •  & K. Wimmer
  4. Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA

    • D. Bazin
    • , A. Gade
    • , H. Iwasaki
    •  & S. R. Stroberg
  5. IFIN-HH, PO Box MG-6, 76900 Bucharest-Magurele, Romania

    • C. Borcea
    • , R. Borcea
    • , F. Rotaru
    •  & M. Stanoiu
  6. Institute for Nuclear Research, Hungarian Academy of Sciences, PO Box 51, Debrecen H-4001, Hungary

    • Z. Dombrádi
    •  & D. Sohler
  7. CEA, DAM, DIF, F-91297 Arpajon, France

    • J.-P. Ebran
  8. TRIUMF, 4004 Westbrook Mall, Vancouver, British Columbia V67 2A3, Canada

    • S. R. Stroberg
  9. Department of Physics, University of Surrey, Guildford GU2 7XH, UK

    • J. A. Tostevin
  10. Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

    • K. Wimmer
  11. Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

    • K. Wimmer

Authors

  1. Search for A. Mutschler in:

  2. Search for A. Lemasson in:

  3. Search for O. Sorlin in:

  4. Search for D. Bazin in:

  5. Search for C. Borcea in:

  6. Search for R. Borcea in:

  7. Search for Z. Dombrádi in:

  8. Search for J.-P. Ebran in:

  9. Search for A. Gade in:

  10. Search for H. Iwasaki in:

  11. Search for E. Khan in:

  12. Search for A. Lepailleur in:

  13. Search for F. Recchia in:

  14. Search for T. Roger in:

  15. Search for F. Rotaru in:

  16. Search for D. Sohler in:

  17. Search for M. Stanoiu in:

  18. Search for S. R. Stroberg in:

  19. Search for J. A. Tostevin in:

  20. Search for M. Vandebrouck in:

  21. Search for D. Weisshaar in:

  22. Search for K. Wimmer in:

Contributions

A.M. performed the offline data analysis, A.Lem., D.W. and K.W. performed on-line data analysis and checked the integrity of data taking. K.W. and A.Lem. performed GEANT4 simulations and wrote parts of the offline sorting code. A.G. and J.A.T. performed reaction theory calculations. D.B. operated the S800 spectrometer. D.W. and F.Re. were responsible for the setting up, calibration and operation of the Gretina array. H.I. and K.W. helped to set up the Gretina array. The manuscript was prepared by O.S., A.M., J.A.T., A.G., A.Lem. and E.K. J.-P.E. performed relativistic mean field calculations. Z.D. and D.S. contributed to the offline data analysis of the γ-ray spectra and C.B., R.B., E.K., A.Lem., A.Lep., H.I., T.R., F.Ro., M.S., M.V. and S.R.S. checked data accumulation on-line. O.S. proposed the experiment and supervised the analysis.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to O. Sorlin.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3916

Further reading

  • β-decay study of neutron-rich nucleus 34Al

    • Rui Han
    • , XiangQing Li
    • , WeiGuang Jiang
    • , ZhiHuan Li
    • , Hui Hua
    • , ShuangQuan Zhang
    • , CenXi Yuan
    • , DongXing Jiang
    • , YanLin Ye
    • , Jing Li
    • , ZongHao Li
    • , FuRong Xu
    • , QiBo Chen
    • , Jie Meng
    • , JianSong Wang
    • , Chuan Xu
    • , YeLei Sun
    • , ChunGuang Wang
    • , HongYi Wu
    • , ChenYang Niu
    • , ChenGuang Li
    • , Chao He
    • , Wei Jiang
    • , PengJie Li
    • , HongLiang Zang
    • , Jun Feng
    • , SiDong Chen
    • , Qiang Liu
    • , XiaoChi Chen
    • , HuShan Xu
    • , ZhengGuo Hu
    • , YanYun Yang
    • , Peng Ma
    • , JunBing Ma
    • , ShiLun Jin
    • , Zhen Bai
    • , MeiRong Huang
    • , YuanJie Zhou
    • , WeiHu Ma
    • , Yong Li
    • , XiaoHong Zhou
    • , YuHu Zhang
    • , GuoQing Xiao
    •  & WenLong Zhan

    Science China Physics, Mechanics & Astronomy (2017)