Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hidden geometric correlations in real multiplex networks

Abstract

Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the layers. We find that these correlations are significant in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers. They also enable accurate trans-layer link prediction, meaning that connections in one layer can be predicted by observing the hidden geometric space of another layer. And they allow efficient targeted navigation in the multilayer system using only local knowledge, outperforming navigation in the single layers only if the geometric correlations are sufficiently strong.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyperbolic mapping of the IPv4/IPv6 Internet.
Figure 2: Distribution of nodes in the two-dimensional similarity space of the Internet, Drosophila and arXiv multiplexes.
Figure 3: Trans-layer connection probability in the Internet, Drosophila and arXiv multiplexes.
Figure 4: Performance of mutual navigation in synthetic multiplexes with geometric correlations.
Figure 5: Performance of mutual navigation as a function of radial and angular correlation strengths (ν, g) in a two-layer synthetic multiplex that best mimics the real IPv4/IPv6 Internet.

Similar content being viewed by others

References

  1. Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).

    Article  Google Scholar 

  2. Radicchi, F. & Arenas, A. Abrupt transition in the structural formation of interconnected networks. Nature Phys. 9, 717–720 (2013).

    Article  ADS  Google Scholar 

  3. Bianconi, G. Multilayer networks: dangerous liaisons? Nature Phys. 10, 712–714 (2014).

    Article  ADS  Google Scholar 

  4. Radicchi, F. Percolation in real interdependent networks. Nature Phys. 11, 597–602 (2015).

    Article  ADS  Google Scholar 

  5. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  6. Szell, M., Lambiotte, R. & Thurner, S. Multirelational organization of large-scale social networks in an online world. Proc. Natl Acad. Sci. USA 107, 13636–13641 (2010).

    Article  ADS  Google Scholar 

  7. Menichetti, G., Remondini, D. & Bianconi, G. Correlations between weights and overlap in ensembles of weighted multiplex networks. Phys. Rev. E 90, 062817 (2014).

    Article  ADS  Google Scholar 

  8. Halu, A., Mukherjee, S. & Bianconi, G. Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting network ensembles. Phys. Rev. E 89, 012806 (2014).

    Article  ADS  Google Scholar 

  9. Kleineberg, K.-K. & Boguñá, M. Evolution of the digital society reveals balance between viral and mass media influence. Phys. Rev. X 4, 031046 (2014).

    Google Scholar 

  10. Kleineberg, K.-K. & Boguñá, M. Digital ecology: coexistence and domination among interacting networks. Sci. Rep. 5, 10268 (2015).

    Article  ADS  Google Scholar 

  11. Kleineberg, K.-K. & Boguñá, M. Competition between global and local online social networks. Sci. Rep. 6, 25116 (2016).

    Article  ADS  Google Scholar 

  12. De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of interconnected networks under random failures. Proc. Natl Acad. Sci. USA 111, 8351–8356 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  13. Simas, T., Chavez, M., Rodriguez, P. R. & Diaz-Guilera, A. An algebraic topological method for multimodal brain networks comparison. Front. Psychol. 6, 904 (2015).

    Article  Google Scholar 

  14. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  15. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguñá, M. Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  16. Boguñá, M., Papadopoulos, F. & Krioukov, D. Sustaining the Internet with hyperbolic mapping. Nature Commun. 1, 62 (2010).

    Article  ADS  Google Scholar 

  17. Papadopoulos, F., Psomas, C. & Krioukov, D. Network mapping by replaying hyperbolic growth. IEEE/ACM Trans. Netw. 23, 198–211 (2015).

    Article  Google Scholar 

  18. Papadopoulos, F., Aldecoa, R. & Krioukov, D. Network geometry inference using common neighbors. Phys. Rev. E 92, 022807 (2015).

    Article  ADS  Google Scholar 

  19. Serrano, M. Á., Krioukov, D. & Boguñá, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).

    Article  ADS  Google Scholar 

  20. Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguñá, M. & Krioukov, D. Popularity versus similarity in growing networks. Nature 489, 537–540 (2012).

    Article  ADS  Google Scholar 

  21. Boguñá, M., Krioukov, D. & Claffy, K. C. Navigability of complex networks. Nature Phys. 5, 74–80 (2008).

    Article  ADS  Google Scholar 

  22. Papadopoulos, F., Krioukov, D., Boguñá, M. & Vahdat, A. Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In INFOCOM’10: Proc. 29th Conf. on Information Communications 2973–2981 (IEEE, 2010).

    Google Scholar 

  23. Travers, J. & Milgram, S. An experimental study of the small world problem. Sociometry 32, 425–443 (1969).

    Article  Google Scholar 

  24. The IPv4 and IPv6 Topology Datasets (Center for Applied Internet Data Analysis, 2015); http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml and https://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml

  25. Krioukov, D., Papadopoulos, F., Vahdat, A. & Boguñá, M. Curvature and temperature of complex networks. Phys. Rev. E 80, 035101 (2009).

    Article  ADS  Google Scholar 

  26. Serrano, M. Á., Boguñá, M. & Sagués, F. Uncovering the hidden geometry behind metabolic networks. Mol. BioSyst. 8, 843–850 (2012).

    Article  Google Scholar 

  27. Zuev, K., Boguñá, M., Bianconi, G. & Krioukov, D. Emergence of soft communities from geometric preferential attachment. Sci. Rep. 5, 9421 (2015).

    Article  ADS  Google Scholar 

  28. Nicosia, V. & Latora, V. Measuring and modeling correlations in multiplex networks. Phys. Rev. E 92, 032805 (2015).

    Article  ADS  Google Scholar 

  29. Min, B., Yi, S. D., Lee, K.-M. & Goh, K.-I. Network robustness of multiplex networks with interlayer degree correlations. Phys. Rev. E 89, 042811 (2014).

    Article  ADS  Google Scholar 

  30. Kim, J. Y. & Goh, K.-I. Coevolution and correlated multiplexity in multiplex networks. Phys. Rev. Lett. 111, 058702 (2013).

    Article  ADS  Google Scholar 

  31. Gemmetto, V. & Garlaschelli, D. Multiplexity versus correlation: the role of local constraints in real multiplexes. Sci. Rep. 5, 9120 (2015).

    Article  ADS  Google Scholar 

  32. Serrano, M. Á., Buzna, L̆ & Boguñá, M. Escaping the avalanche collapse in self-similar multiplexes. New J. Phys. 17, 053033 (2015).

    Article  Google Scholar 

  33. De Domenico, M., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5, 011027 (2015).

    Google Scholar 

  34. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhu, G. & Li, K. Web Information Systems Engineering—WISE 2014 Vol. 8786, 31–46 (Lecture Notes in Computer Science, 2014).

    Book  Google Scholar 

  36. Loe, C. W. & Jensen, H. J. Comparison of communities detection algorithms for multiplex. Physica A 431, 29–45 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  37. Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  38. Lü, L. & Zhou, T. Link prediction in complex networks: a survey. Physica A 390, 1150–1170 (2011).

    Article  ADS  Google Scholar 

  39. Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008).

    Article  ADS  Google Scholar 

  40. Hristova, D., Noulas, A., Brown, C., Musolesi, M. & Mascolo, C. A multilayer approach to multiplexity and link prediction in online geo-social networks. Preprint at http://arXiv.org/abs/1508.07876 (2015).

  41. Contreras, J. L. & Reichman, J. H. Sharing by design: data and decentralized commons. Science 350, 1312–1314 (2015).

    Article  ADS  Google Scholar 

  42. Helbing, D. & Pournaras, E. Society: build digital democracy. Nature 527, 33–34 (2015).

    Article  ADS  Google Scholar 

  43. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucl. Acids Res. 34, D535–D539 (2006).

    Article  Google Scholar 

  44. De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of multilayer networks. Nature Commun. 6, 6864 (2015).

    Article  ADS  Google Scholar 

  45. Chen, B. L., Hall, D. H. & Chklovskii, D. B. Wiring optimization can relate neuronal structure and function. Proc. Natl Acad. Sci. USA 103, 4723–4728 (2006).

    Article  ADS  Google Scholar 

  46. De Domenico, M., Porter, M. A. & Arenas, A. Muxviz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3, 159–176 (2015).

    Article  Google Scholar 

  47. Coleman, J., Katz, E. & Menzel, H. The diffusion of an innovation among physicians. Sociometry 20, 253–270 (1957).

    Article  Google Scholar 

  48. Dorogovtsev, S. N. Lectures on Complex Networks (Oxford Univ. Press, 2010).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by: the European Commission through the Marie Curie ITN ‘iSocial’ grant no. PITN-GA-2012-316808; a J. S. McDonnell Foundation Scholar Award in Complex Systems; the ICREA Academia prize, funded by the Generalitat de Catalunya; the MINECO project no. FIS2013-47282-C2-1-P; and the Generalitat de Catalunya grant no. 2014SGR608. Furthermore, M.B. and M.A.S. acknowledge support from the European Commission FET-Proactive Project MULTIPLEX no. 317532.

Author information

Authors and Affiliations

Authors

Contributions

K.-K.K. and F.P. conducted the research; all authors designed the research, discussed the results, and wrote the manuscript.

Corresponding authors

Correspondence to Kaj-Kolja Kleineberg or Fragkiskos Papadopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleineberg, KK., Boguñá, M., Ángeles Serrano, M. et al. Hidden geometric correlations in real multiplex networks. Nature Phys 12, 1076–1081 (2016). https://doi.org/10.1038/nphys3812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3812

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics