Progress Article | Published:

Topological quantum matter with ultracold gases in optical lattices

Nature Physics volume 12, pages 639645 (2016) | Download Citation

Abstract

Since the discovery of topological insulators, many topological phases have been predicted and realized in a range of different systems, providing both fascinating physics and exciting opportunities for devices. And although new materials are being developed and explored all the time, the prospects for probing exotic topological phases would be greatly enhanced if they could be realized in systems that were easily tuned. The flexibility offered by ultracold atoms could provide such a platform. Here, we review the tools available for creating topological states using ultracold atoms in optical lattices, give an overview of the theoretical and experimental advances and provide an outlook towards realizing strongly correlated topological phases.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & The Quantum Hall Effect (Springer, 1990).

  2. 2.

    & Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

  3. 3.

    & Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

  4. 4.

    & Topological flat band models and fractional Chern insulators. Int. J. Mod. Phys. B 27, 1330017 (2013).

  5. 5.

    , , , & Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

  6. 6.

    , & Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).

  7. 7.

    , & Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems 1st edn (Oxford Univ. Press, 2012).

  8. 8.

    , & Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

  9. 9.

    & Cold atoms in dissipative optical lattices. Phys. Rep. 355, 335–451 (2001).

  10. 10.

    , , & Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010).

  11. 11.

    Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).

  12. 12.

    , , & Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011).

  13. 13.

    , , & Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

  14. 14.

    , , , & A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

  15. 15.

    et al. Single-site- and single-atom-resolved measurement of correlation functions. Appl. Phys. B 113, 27–39 (2013).

  16. 16.

    et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

  17. 17.

    et al. Excitation of phonons in a Bose–Einstein condensate by light scattering. Phys. Rev. Lett. 83, 2876–2879 (1999).

  18. 18.

    et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

  19. 19.

    et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015).

  20. 20.

    , & Fractional quantum Hall states of atoms in optical lattices. Phys. Rev. Lett. 94, 086803 (2005).

  21. 21.

    , , & Analog of photon-assisted tunneling in a Bose–Einstein condensate. Phys. Rev. Lett. 95, 200401 (2005).

  22. 22.

    , , & Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

  23. 23.

    , & Floquet topological insulator in semiconductor quantum wells. Nature Phys. 7, 490–495 (2011).

  24. 24.

    , & Synthetic gauge fields for vibrational excitations of trapped ions. Phys. Rev. Lett. 107, 150501 (2011).

  25. 25.

    Creating artificial magnetic fields for cold atoms by photon-assisted tunneling. Europhys. Lett. 93, 20003 (2011).

  26. 26.

    et al. Non-abelian gauge fields and topological insulators in shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012).

  27. 27.

    , , & Floquet topological insulators. Phys. Status Solidi 7, 101–108 (2013).

  28. 28.

    & Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).

  29. 29.

    & Floquet topological states in shaking optical lattices. Phys. Rev. A 89, 061603(R) (2014).

  30. 30.

    , & Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

  31. 31.

    et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

  32. 32.

    & Slow light in degenerate Fermi gases. Phys. Rev. Lett. 93, 033602 (2004).

  33. 33.

    & Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003).

  34. 34.

    , , , & Cold atoms in non-abelian gauge potentials: from the Hofstadter “Moth” to lattice gauge theory. Phys. Rev. Lett. 95, 010403 (2005).

  35. 35.

    , , & Non-abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005).

  36. 36.

    et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

  37. 37.

    Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

  38. 38.

    & Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).

  39. 39.

    The geometric phase in molecular systems. Rev. Mod. Phys. 64, 51–85 (1992).

  40. 40.

    , & Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

  41. 41.

    & Mapping the Berry curvature from semiclassical dynamics in optical lattices. Phys. Rev. A 85, 033620 (2012).

  42. 42.

    et al. An Aharonov-Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

  43. 43.

    , , , & Seeing topological order in time-of-flight measurements. Phys. Rev. Lett. 107, 235301 (2011).

  44. 44.

    , & Tomography of band insulators from quench dynamics. Phys. Rev. Lett. 113, 045303 (2014).

  45. 45.

    et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016).

  46. 46.

    Geometry, Topology and Physics (IOP Publishing, 2003).

  47. 47.

    , , & Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

  48. 48.

    & Extracting the Chern number from the dynamics of a Fermi gas: implementing a quantum Hall bar for cold atoms. Phys. Rev. Lett. 111, 135302 (2013).

  49. 49.

    , , , & Measurement of Chern numbers through center-of-mass responses. Phys. Rev. B 93, 245113 (2016).

  50. 50.

    , , & Detecting topological phases in cold atoms. Phys. Rev. Lett. 111, 120402 (2013).

  51. 51.

    et al. Realization of two-dimensional spin-orbit coupling for Bose–Einstein condensates. Preprint at (2015).

  52. 52.

    , , , & Interferometric measurements of many-body topological invariants using mobile impurities. Preprint at (2015).

  53. 53.

    Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

  54. 54.

    et al. Direct imaging of topological edge states in cold-atom systems. Proc. Natl Acad. Sci. USA 110, 6736–6741 (2013).

  55. 55.

    & Floquet edge states with ultracold atoms. Phys. Rev. A 89, 063628 (2014).

  56. 56.

    et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

  57. 57.

    , , , & Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

  58. 58.

    et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nature Phys. 10, 588–593 (2014).

  59. 59.

    , , & Quantum anomalous Hall effect with cold atoms trapped in a square lattice. Phys. Rev. A 81, 033622 (2010).

  60. 60.

    , & Topological states in two-dimensional optical lattices. Phys. Rev. A 82, 013608 (2010).

  61. 61.

    , & Detecting chiral edge states in the Hofstadter optical lattice. Phys. Rev. Lett. 108, 255303 (2012).

  62. 62.

    et al. Wilson fermions and axion electrodynamics in optical lattices. Phys. Rev. Lett. 105, 190404 (2010).

  63. 63.

    et al. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).

  64. 64.

    , , , & Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett. 115, 195303 (2015).

  65. 65.

    The effect of a magnetic field on electrons in a periodic potential. Phys. Rev. 84, 814–817 (1951).

  66. 66.

    Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

  67. 67.

    Optical flux lattices for ultracold atomic gases. Phys. Rev. Lett. 106, 175301 (2011).

  68. 68.

    , , , & Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

  69. 69.

    , & Manipulating atoms in an optical lattice: fractional fermion number and its optical quantum measurement. Phys. Rev. Lett. 88, 180401 (2002).

  70. 70.

    & Gauge fields for ultracold atoms in optical superlattices. New J. Phys. 12, 033007 (2010).

  71. 71.

    et al. Realistic time-reversal invariant topological insulators with neutral atoms. Phys. Rev. Lett. 105, 255302 (2010).

  72. 72.

    , & Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett. 112, 086401 (2014).

  73. 73.

    et al. Topological flat bands from dipolar spin systems. Phys. Rev. Lett. 109, 266804 (2012).

  74. 74.

    , , & Topological semimetal in a fermionic optical lattice. Nature Phys. 8, 67–70 (2012).

  75. 75.

    , & Rydberg-atom quantum simulation and Chern-number characterization of a topological Mott insulator. Phys. Rev. A 86, 053618 (2012).

  76. 76.

    , , , & Magnetic crystals and helical liquids in alkaline-earth fermionic gases. Nature Commun. 6, 8134 (2015).

  77. 77.

    et al. Quantum Hall physics with cold atoms in cylindrical optical lattices. Phys. Rev. A 93, 013604 (2016).

  78. 78.

    et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

  79. 79.

    , , , & Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

  80. 80.

    , , & Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nature Phys. 11, 859–864 (2015).

  81. 81.

    , , , & A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nature Phys. 12, 350–354 (2016).

  82. 82.

    et al. Topological Thouless pumping of ultracold fermions. Nature Phys. 12, 296–300 (2015).

  83. 83.

    et al. Geometrical pumping with a Bose–Einstein condensate. Phys. Rev. Lett. 116, 200402 (2016).

  84. 84.

    Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

  85. 85.

    et al. Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nature Phys. 9, 738–743 (2013).

  86. 86.

    Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

  87. 87.

    & Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

  88. 88.

    & Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

  89. 89.

    Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

  90. 90.

    , , & Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

  91. 91.

    & Spin-orbit coupling in quantum gases. Nature 494, 49–54 (2013).

  92. 92.

    et al. Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases. Nature Phys. 12, 540–544 (2016).

  93. 93.

    , , & px + ipy superfluid from s-wave interactions of fermionic cold atoms. Phys. Rev. Lett. 101, 160401 (2008).

  94. 94.

    , & Creating p-wave superfluids and topological excitations in optical lattices. Phys. Rev. A 81, 031607 (2010).

  95. 95.

    , & Emergence of Majorana and dirac particles in ultracold fermions via tunable interactions, spin-orbit effects, and Zeeman fields. Phys. Rev. Lett. 109, 105303 (2012).

  96. 96.

    , , , & Quantum computation using vortices and Majorana zero modes of a px + ipy superfluid of fermionic cold atoms. Phys. Rev. Lett. 98, 010506 (2007).

  97. 97.

    et al. Majorana fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, 220402 (2011).

  98. 98.

    Realizing one-dimensional topological superfluids with ultracold atomic gases. J. Phys. B 46, 134005 (2013).

  99. 99.

    , , , & Majorana edge states in atomic wires coupled by pair hopping. Phys. Rev. Lett. 111, 173004 (2013).

  100. 100.

    , & Braiding of atomic Majorana fermions in wire networks and implementation of the Deutsch–Jozsa algorithm. Phys. Rev. Lett. 111, 203001 (2013).

  101. 101.

    et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

  102. 102.

    , & Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).

  103. 103.

    On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).

  104. 104.

    , , & Topology by dissipation in atomic quantum wires. Nature Phys. 7, 971–977 (2011).

  105. 105.

    et al. Topology by dissipation. New J. Phys. 15, 085001 (2013).

  106. 106.

    et al. Majorana modes in driven-dissipative atomic superfluids with a zero Chern number. Phys. Rev. Lett. 109, 130402 (2012).

  107. 107.

    Wannier functions for magnetic sub-bands. J. Phys. C 17, L325–L327 (1984).

  108. 108.

    , & Dissipative preparation of Chern insulators. Phys. Rev. A 91, 042117 (2015).

  109. 109.

    & Topology of density matrices. Phys. Rev. B 91, 165140 (2015).

  110. 110.

    Quantum Field Theory of Many-body Systems (Oxford Univ. Press, 2007).

  111. 111.

    , , & Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2015).

  112. 112.

    & High-field fractional quantum Hall effect in optical lattices. Phys. Rev. Lett. 96, 180407 (2006).

  113. 113.

    , , & Fractional quantum Hall effect in optical lattices. Phys. Rev. A 76, 023613 (2007).

  114. 114.

    & Composite Fermion theory for bosonic quantum Hall states on lattices. Phys. Rev. Lett. 103, 105303 (2009).

  115. 115.

    & Exact parent Hamiltonian for the quantum Hall states in a lattice. Phys. Rev. Lett. 105, 215303 (2010).

  116. 116.

    , & Local models of fractional quantum Hall states in lattices and physical implementation. Nature Commun. 4, 2864 (2013).

  117. 117.

    & Reaching fractional quantum Hall states with optical flux lattices. Phys. Rev. Lett. 110, 185301 (2013).

  118. 118.

    & Fractional Chern insulators in Harper-Hofstadter bands with higher Chern number. Phys. Rev. Lett. 115, 126401 (2015).

  119. 119.

    et al. Observation of four-body ring-exchange interactions and anyonic fractional statistics. Preprint at (2016).

  120. 120.

    Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

  121. 121.

    et al. Designing frustrated quantum magnets with laser-dressed Rydberg atoms. Phys. Rev. Lett. 114, 173002 (2015).

  122. 122.

    & Quantum magnetism and topological ordering via Rydberg dressing near Förster resonances. Phys. Rev. Lett. 114, 243002 (2015).

  123. 123.

    et al. Quantum spin-ice and dimer models with Rydberg atoms. Phys. Rev. X 4, 041037 (2014).

Download references

Acknowledgements

The authors would like to acknowledge M. Aidelsburger, I. Bloch, L. Fallani and M. Mancini for providing experimental data. N.G. is financed by the FRS-FNRS Belgium and by the BSPO under PAI Project No. P7/18 DYGEST. This work has also been supported by the ERC synergy grant UQUAM.

Author information

Affiliations

  1. CENOLI, Faculté des Sciences, Université Libre de Bruxelles (U.L.B.), B-1050 Brussels, Belgium

    • N. Goldman
  2. Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

    • J. C. Budich
    •  & P. Zoller
  3. Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria

    • J. C. Budich
    •  & P. Zoller

Authors

  1. Search for N. Goldman in:

  2. Search for J. C. Budich in:

  3. Search for P. Zoller in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to N. Goldman.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3803

Further reading