Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature spin–orbit torque in NiMnSb

Abstract

Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin–orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin–orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin–orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin–orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin–orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Relativistic non-equilibrium spin polarizations in non-centrosymmetric lattices.
Figure 2: Spin–orbit FMR experiment.
Figure 3: Angle dependence of the resonance field.
Figure 4: Spin–orbit field components.

References

  1. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    ADS  Article  Google Scholar 

  2. Kato, Y. K., Myers, R., Gossard, A. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    ADS  Article  Google Scholar 

  3. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental discovery of the spin-Hall effect in Rashba spin–orbit coupled semiconductor systems. Preprint at http://arxiv.org/abs/cond-mat/0410295v1 (2004).

  4. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    ADS  Article  Google Scholar 

  5. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effect. Rev. Mod. Phys. 87, 1213–1259 (2015).

    ADS  Article  Google Scholar 

  6. Silov, A. Y. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    ADS  Article  Google Scholar 

  7. Ganichev, S. D. et al. Can an electric current orient spins in quantum wells? Preprint at http://arxiv.org/abs/cond-mat/0403641 (2004).

  8. Bernevig, B. A. & Zhang, S.-C. Spin splitting and spin current in strained bulk semiconductors. Phys. Rev. B 72, 115204 (2005).

    ADS  Article  Google Scholar 

  9. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spinorbit magnetic field. Nature Phys. 5, 656–659 (2009).

    ADS  Article  Google Scholar 

  10. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nature Nanotech. 6, 413–417 (2011).

    ADS  Article  Google Scholar 

  11. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nature Nanotech. 9, 211–217 (2014).

    ADS  Article  Google Scholar 

  12. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    ADS  Article  Google Scholar 

  13. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    ADS  Article  Google Scholar 

  14. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    ADS  Article  Google Scholar 

  15. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    ADS  Article  Google Scholar 

  16. Skinner, T. D. et al. Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer. Nature Commun. 6, 6730 (2015).

    ADS  Article  Google Scholar 

  17. Otto, M. J. et al. Half-metallic ferromagnets: I. Structure and magnetic properties of NiMnSb and related inter-metallic compounds. J. Phys. Condens. Matter 1, 2341–2350 (1989).

    ADS  Article  Google Scholar 

  18. Otto, M. J. et al. Half-metallic ferromagnets. II. Transport properties of NiMnSb and related inter-metallic compounds. J. Phys. Condens. Matter 1, 2351–2360 (1999).

    ADS  Article  Google Scholar 

  19. Gerhard, F., Schumacher, C., Gould, C. & Molenkamp, L. W. Control of the magnetic in-plane anisotropy in off-stoichiometric NiMnSb. J. Appl. Phys. 115, 094505 (2014).

    ADS  Article  Google Scholar 

  20. Hordequin, C., Nozières, J. P. & Pierre, J. Half metallic NiMnSb-based spin-valve structures. J. Magn. Magn. Mater. 183, 225–231 (1998).

    ADS  Article  Google Scholar 

  21. Riegler, A. Ferromagnetic Resonance Study of the Half-Heusler Alloy NiMnSb: The Benefit of Using NiMnSb as a Ferromagnetic Layer in Pseudo Spin-Valve Based Spin-Torque Oscillators PhD thesis, Univ. Wuerzburg (2011).

  22. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    ADS  Article  Google Scholar 

  23. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    ADS  Article  Google Scholar 

  24. Ivchenko, E. L. & Ganichev, S. D. in Spin Physics in Semiconductors (ed. Dyakonov, M.) 245 (Springer, 2008).

    Book  Google Scholar 

  25. Belkov, V. V. & Ganichev, S. D. Magneto-gyrotropic effects in semiconductor quantum wells. Semicond. Sci. Technol. 23, 114003 (2008).

    ADS  Article  Google Scholar 

  26. Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nature Phys. 10, 387–393 (2014).

    ADS  Article  Google Scholar 

  27. Železný, J. et al. Relativistic Néel-Order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    ADS  Article  Google Scholar 

  28. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    ADS  Article  Google Scholar 

  29. Harder, M., Cao, Z. X., Gui, Y. S., Fan, X. L. & Hu, C.-M. Analysis of the line shape of electrically detected ferromagnetic resonance. Phys. Rev. B 84, 054423 (2011).

    ADS  Article  Google Scholar 

  30. Artman, J. O. Ferromagnetic resonance in metal single crystals. Phys. Rev. 105, 74–84 (1957).

    ADS  Article  Google Scholar 

  31. Artman, J. Microwave resonance relations in anisotropic single crystal ferrites. Proc. IRE 44, 1284–1293 (1956).

    Article  Google Scholar 

  32. Farle, M. Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755–826 (1998).

    ADS  Article  Google Scholar 

  33. Koveshnikov, A. et al. Structural and magnetic properties of NiMnSb/InGaAs/InP(001). J. Appl. Phys. 97, 073906 (2005).

    ADS  Article  Google Scholar 

  34. Freimuth, F., Blügel, S. & Mokrousov, Y. Spin–orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B 90, 174423 (2014).

    ADS  Article  Google Scholar 

  35. Xia, K., Zwierzycki, M., Talanana, M., Kelly, P. J. & Bauer, G. E. W. First-principles scattering matrices for spin transport. Phys. Rev. B 73, 064420 (2006).

    ADS  Article  Google Scholar 

  36. Liu, Y., Starikov, A. A., Yuan, Z. & Kelly, P. J. First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys. Rev. B 84, 014412 (2011).

    ADS  Article  Google Scholar 

  37. Hahn, T. (ed.) International Tables for Crystallography Vol. A, 1st edn (International Union of Crystallography, 2006).

Download references

Acknowledgements

C.C. acknowledges support from a Junior Research Fellowship at Gonville and Caius College. L.A. acknowledges support from the James B. Reynolds Scholarship at Dartmouth College. A.J.F. acknowledges support from a Hitachi Research Fellowship and a EU ERC Consolidator Grant No. 648613. F.G. acknowledges financial support from the University of Würzburg’s programme ‘Equal opportunities for women in research and teaching’. J.G. acknowledges support from SPIN+X SFB/TRR 173. J.G. and J.S. acknowledge support from the Alexander von Humboldt Foundation. L.Š. acknowledges support from the Grant Agency of the Charles University, No. 280815 and access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme ‘Projects of Large Infrastructure for Research, Development, and Innovations’ (LM2010005). J.Ž. and F.F. gratefully acknowledge computing time on the supercomputers JUQUEEN and JUROPA at Juelich Supercomputing Centre. T.J. acknowledges support from EU ERC Advanced Grant No. 268066, from the Ministry of Education of the Czech Republic Grant No. LM2011026, and from the Grant Agency of the Czech Republic Grant no. 14-37427.

Author information

Authors and Affiliations

Authors

Contributions

Theory and data modelling were performed by J.G., J.Ž., L.Š., Z.Y., J.S., F.F. and T.J. Materials were prepared by F.G. and C.G. Sample preparation was performed by C.C. Experiments and data analysis were carried out by C.C., L.A., V.T. and A.J.F. The manuscript was written by T.J. and C.C., project planning was performed by A.J.F., L.W.M., J.S. and T.J. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to A. J. Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1483 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciccarelli, C., Anderson, L., Tshitoyan, V. et al. Room-temperature spin–orbit torque in NiMnSb. Nature Phys 12, 855–860 (2016). https://doi.org/10.1038/nphys3772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3772

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing